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Introduction

The observed Universe is not homogeneous and isotropic. It contains galaxies,
clusters of galaxies, voids, filaments...

M. Blanton and the Sloan Digital Sky Survey Team.
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Introduction

We assume that on large scales there is a well defined mean density and on
intermediate scales, the density differs little from it.

This is a highly non-trivial assumption, which is best justified by the isotropy of the
cosmic microwave background, the CMB.

Under the hypothesis that cosmic structure grew out of small initial fluctuations we
can study their evolution using perturbation theory.

At late times and sufficiently small scales fluctuations of the cosmic density are not
small. The density inside a galaxy is about 105 times higher than the mean density
of the Universe.

Perturbation theory is then not adequate and we need N-body simulations to study
structure formation on galaxy - cluster scales of a few Mpc and less.

Since this is mainly relevant on scales much smaller than the Hubble scale
(3000h−1Mpc), it has been studied in the past mainly with non-relativistic
simulations. Since a couple years several groups have started to develop also
relativistic simulations.

Ruth Durrer (Université de Genève) Structure Formation in the Universe Marseille, Mai 2018 4 / 35



Introduction

We assume that on large scales there is a well defined mean density and on
intermediate scales, the density differs little from it.

This is a highly non-trivial assumption, which is best justified by the isotropy of the
cosmic microwave background, the CMB.

Under the hypothesis that cosmic structure grew out of small initial fluctuations we
can study their evolution using perturbation theory.

At late times and sufficiently small scales fluctuations of the cosmic density are not
small. The density inside a galaxy is about 105 times higher than the mean density
of the Universe.

Perturbation theory is then not adequate and we need N-body simulations to study
structure formation on galaxy - cluster scales of a few Mpc and less.

Since this is mainly relevant on scales much smaller than the Hubble scale
(3000h−1Mpc), it has been studied in the past mainly with non-relativistic
simulations. Since a couple years several groups have started to develop also
relativistic simulations.
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Linear cosmological perturbation theory
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Linear perturbation theory: Gauge transformation

Splitting the true metric into a background and a perturbation,

gµνdxµdxν = a2(t)
[
−(1 + 2A)dt2 − 2Bidtdx i + (1 + 2HL)γijdx idx j + 2Hijdx idx j

]
= a2(t) [η̄µν + εδηµν ] dxµdxν = [ḡµν + εδgµν ] dxµdxν

is not unique. Under a linearized coordinate transformation (gauge transformation),
xµ → xµ + εXµ, the metric (and any other tensor field) changes like

gµν 7→ gµν + εLX gµν , δgµν 7→ δgµν + LX ḡµν .

The same is true for the energy momentum tensor,

Tµν = T̄µν + εδTµν , δTµν 7→ δTµν + LX T̄µν .

A variable (tensor field) V is called gauge invariant if it does not change under gauge
transformations. As we see from the above equations, this happens if LX V̄ = 0 ∀ X ,
hence V̄ = constant. (Stewart Walker lemma).
Furthermore, even if the total metric and energy momentum tensor satisfy Einstein’s
equation, this is in general not true for arbitrary splits into a background and a
perturbation. We call a split ’admissible’ if it is true. For an admissible split also the
perturbations satisfy Einstein’s equations.
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Linear perturbation theory: Gauge invariant variables

We typically split spatial tensor fields into helicity zero (scalar) helicity one (vector) and
helicity two (tensor) parts. These do not mix within linear perturbation theory due to
rotational symmetry of the background. The same is true for each Fourier component
(translational symmetry)

Bi = ∇iB + B(V )
i , Hij =

(
∇i∇j −

1
3

∆γij

)
H(S) +

(
∇iH

(V )
j +∇jH

(V )
i

)
+ H(T )

ij

∇iB(V )
i = ∇iH(V )

i = ∇iH(T )
ij = H j (T )

i = 0 .

I shall not discuss vector perturbations any further. They seem not to be relevant in
cosmology.
In the background Friedmann-Lemaı̂tre universe the Weyl tensor Cµ

ναβ and the
anisotropic stress tensor Πµν vanish⇒ their perturbations are gauge-invariant,

Πµν = Tµν − (ρ+ P)uµuν − Pgµν .

Here ρ and u are defined by Tµν uν = −ρuµ, uµuµ = −1 and Tµµ + ρ = 3P.
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Linear perturbation theory: Gauge invariant variables

For scalar perturbations we can define the so called Bardeen potentials. In Fourier
space (k = wavenumber) they are given by

Ψ = A−Hk−1σ − k−1σ̇ ,

Φ = −HL −
1
3

H(S) +Hk−1σ = −R+Hk−1σ

σ = k−1Ḣ(S) − B R = HL +
1
3

H(S) .

The non-vanishing components of Cµ
ναβ and Πµν are then given by

Eij ≡ Cµ
iν juµuν = −C0

i0j = −1
2

[
(Ψ + Φ)|ij −

1
3

∆(Ψ + Φ)γij

]
8πGa2Πij = (Ψ− Φ)|ij −

1
3

∆(Ψ− Φ)γij .

For the last eqn. we used Einstein’s equation.
In longitudinal (Newtonian) gauge, B = H(S) = 0, the perturbed metric is given by

δgµν = −2a2
[
Ψdt2 + Φγijdx idx j

]
.

Tensor perturbations are gauge invariant (there are no tensor-type
gauge-transformations).
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Linear perturbation theory: Gauge invariant variables

Apart from the anisotropic stress, the entropy perturbation

Γ = (δP +
c2

s

w
δρ)/ρ̄

is gauge invariant. To obtain gauge invariant perturbations of the velocity and density
perturbations, δ = (ρ− ρ̄)/ρ̄ one has to combine them with metric perturbations. The
most common combinations are

V ≡ v − 1
k

ḢT = v long

Ds ≡ δ + 3(1 + w)H(k−2ḢT − k−1B) ≡ δlong ,

D ≡ δlong + 3(1 + w)
H
k

V = δ + 3(1 + w)
H
k

(v − B)

= Ds + 3(1 + w)
H
k

V ,

Dg ≡ δ + 3(1 + w)

(
HL +

1
3

H(S)

)
= δlong − 3(1 + w)Φ

= Ds − 3(1 + w)Φ .
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Density perturbation spectrum

The resulting density perturbation spectrum depends on the choice of the perturbation
variable only on very large scales, k <∼H−1

0 .

P(k)

0.001 0.01 0.1 1

10

100

1000

104

k
Comparing density fluctuations in different gauges:

comoving gauge, D (blue), longitudinal gauge, Ds (red) and
spatially flat gauge, Dg (green)
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Linear perturbation theory: Perturbation equations

Einstein’s equations (H = ȧ/a = Ha)

4πGa2ρD = −(k2 − 3K )Φ (00)

4πGa2(ρ+ P)V = k
(
HΨ + Φ̇

)
(0i)

8πGa2PΠ(S) = k2 (Φ−Ψ) (i 6= j)
4πGa2ρ

[ 1
3 D + c2

s Ds + wΓ
]

= Φ̈ + 2HΦ̇ +HΨ̇ +
[
2Ḣ+H2 − k2

3

]
Ψ (ii)

8πGa2PΠ(T ) = Ḧ(T ) + 2HḢ(T ) +
(
2K + k2)H(T ) (tensor)

Conservation equations for scalar perturbations (w = P/ρ, c2
s = Ṗ/ρ̇)

Ḋ − 3wHD = −
(

1− 3K
k2

)
[(1 + w)kV + 2HwΠ] ,

V̇ +HV = k
[

Ψ +
c2

s

1 + w
D +

w
1 + w

Γ− 2
3

(
1− 3K

k2

)
w

1 + w
Π

]
.

Bardeen equation for scalar perturbations

Φ̈ + 3H(1 + c2
s )Φ̇ +

[
3(c2

s − w)H2 − (2 + 3w + 3c2
s )K + c2

s k2
]

Φ

=
8πGa2P

k2

[
HΠ̇ + [2Ḣ+ 3H2(1− c2

s/w)]Π− 1
3

k2Π +
k2

2
Γ

]
.
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8πGa2PΠ(T ) = Ḧ(T ) + 2HḢ(T ) +
(
2K + k2)H(T ) (tensor)

Conservation equations for scalar perturbations (w = P/ρ, c2
s = Ṗ/ρ̇)
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Linear perturbation theory: Simple solutions

We consider adiabatic fluctuations of a perfect fluid (Γ = Π = 0) with K = 0 and
w = c2

s =constant. In this case the Bardeen eqn. simplifies to

Φ̈ + 3H(1 + w)Φ̇ + 3wk2Φ = 0 , H =
2

1 + 3w
t−1 =

q
t

with solution
Φ =

1
a

[Ajq(cskt) + Byq(cskt)]

On large scales, cskt < 1 the growing mode ∝ A is constant, on small scales, cskt > 1
it oscillates and decays.
For radiation, w = c2

s = 1/3, q = 1.
The case of dust, c2

s = w = 0 has been treated apart. In this case the solution is

Φ = A +
B

(kt)5 .

Again, the growing mode is constant.
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Bardeen potential

Starting from scale invariant initial conditions, 〈|Ψ|2〉k3 = AS(k/H0)n−1, n = 1 one finds
today a Bardeen potential of roughly the following form:
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Linear perturbation theory: Simple solutions

From the Bardeen potential we can now compute the density and velocity
perturbations.
For dust we obtain for the growing modes

V ∝ t D ∝ t2 ∝ a .

For radiation we find, x = kt/
√

3

Dg = 2A
[
cos(x)− 2

x
sin(x)

]
,

V = −
√

3
4

D′g =

√
3A
2

[
sin(x) +

2
x

cos(x)− 2
x2 sin(x)

]
.

These are the acoustic oscillations which we see in the CMB temperature anisotropy
spectrum.
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CMB spectrum
Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is

8

The Planck Collaboration, 2015
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What do we observe?

Measured quantities must be gauge invariant. They do not depend on the coordinate
system in which we compute them.
We have long ago (1990-95) computed what we measure (within linear perturbation
theory) when we masure CMB anisotropies. A simplified formula neglecting Silk
damping is (RD 1990)

∆T (n)

T
=

[
1
4

D(r)
g + V (b)

j nj + Ψ + Φ

]
(tdec, xdec) +

∫ t0

tdec

(Ψ̇ + Φ̇)(t , x(t)) dt .

This result is obtained by studying lightlike geodesics.
To go beyond this and take into account polarisation and Silk damping, we have to
study the propagation of photons with a Boltzmann equation approach.
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The observed number count

For density perturbations (even neglecting bias and non-linearities) it is more
complicated. We consider the following measurement: we count the galaxies in a small
redshift element dz around redshift z and solid angle dΩn around a direction n. To
obtain the fluctuation of this number count we subtract from it the mean number of
galaxies inside a redshift bin dz and a solid angle dΩn and we also divide by this mean,

∆(z,n) =
N(z,n)− N̄(z)

N̄(z)
.

Assuming that the number of galaxies is proportional to the matter density times the
volume we have

dN(z,n) = ρ(z,n)dV (z,n) = ρ(z,n)ν(z,n)dzdΩn ν(z,n) =
dV (z,n)

dzdΩn
.

To continue we have also to take into account that also the redshift and the direction
from which we see the galaxy are perturbed. Taking this all into account we find the
perturbed expression for the observed number counts,

Ruth Durrer (Université de Genève) Structure Formation in the Universe Marseille, Mai 2018 17 / 35



The observed number count

∆g(n, z,m∗) = bD +
1
H

[
Φ̇ + ∂r (V · n)

]
− (3− be)HV +(

Ḣ
H2 +

2− 5s
rsH

+ 5s − be

)(
Ψ + V · n +

∫ rs

0
dr(Φ̇ + Ψ̇

)
−(2− 5s)Φ + Ψ +

2− 5s
2rs

∫ rs

0
dr
[
2(Φ + Ψ)− rs − r

r
∆Ω(Φ + Ψ)

]
(Bonvin & RD 2011, Challinor & Lewis 2011)

The first term is simply the biased density contrast in comoving gauge. The second
term is the redshift space distortion (the radial volume distortion) the last term is the
lensing term (the transversal volume distortion). The other terms (Doppler, Shapiro
time delay, integrated Sachs Wolfe term) are relevant mainly on very large scales.
m∗ is the magnitude limit of the survey and L∗ is the limiting luminosity.

be is the evolution bias,

5
2

s =
∂ log ng(z, L)

∂ log L

∣∣∣∣
L=L∗

is the magnification bias.

Ruth Durrer (Université de Genève) Structure Formation in the Universe Marseille, Mai 2018 18 / 35



The observed number count

The observed number count fluctuation is not a function of position but a function of
(observed) direction n and redshift z; (n, z) are observable coordinates on the
background lightcone.
We cannot observe distances. To infer a distance from observations in cosmology, we
always use a model. Hence the real space correlation function and its Fourier
transform, the power spectrum are model dependent.
We can directly observe the angular-redshift correlation function,

ξ(n · n′, z, z′) = 〈∆(n, z)∆(n′, z′)〉

or its angular power spectrum, C`(z, z′), n · n′ = cos θ

ξ(θ, z, z′) =
1

4π

∑
`

(2`+ 1)C`(z, z′)P`(cos θ)
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The observed number count

The distance between two galaxies in directions n and n′ at redshifts z and z′, for
K = 0

d =
√

r(z)2 + r(z′)2 − 2r(z)r(z′) cos θ

depends on the cosmological model via

r(z) =

∫ z

0

dz′

H(z′)
=

1
H0

∫ z

0

dz′√
Ωm(1 + z′)3 + Ωdef (z′)

One therefore has to be very careful when estimating cosmological parameters via the
real space correlation function or the power spectrum.
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The observed number count

Parameter dependence of the real
space correlation function.
(Figure by F. Montanari)
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Density and RSD

Most present analyses take into account only the density and rsd terms and consider s
small survey in direction n in the sky.
Using kV/H = H−1Ḋ = f (z)D, f (z) = d log D/d log a ∼ Ωm(z)0.57 one finds

ξobs(d, z) = ξ(d)T 2
D(z) [β0(z)P0(µ)− β2(z)P2(µ) + β4(z)P4(µ)] ,

Pobs(k, z) = P(k)T 2
D(z) [β0(z)P0(µ) + β2(z)P2(µ) + β4(z)P4(µ)] ,

with

β0 = b2 +
2bf
3

+
f 2

5
, β2 =

4bf
3

+
4f 2

7
, β4 =

8f 2

35
.

µ = d̂ · n = cos γ,
or µ = k̂ · n.

↵2
↵2

s t
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Lensing

The lensing term can become very important at high redshift and for different redshifts,
z 6= z′.
Contributions to the power spectrum at redshift z′ = z = 3,∆z = 0.3
(from Bonvin & RD ’11)
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Measuring the lensing potential

Well separated redshift bins measure mainly the lensing-density correlation:

〈∆(n, z)∆(n′, z′)〉 ' 〈∆L(n, z)δ(n′, z′)〉 z > z′

∆L(n, z) = (2− 5s(z))κ(n, z)
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The radial power spectrum
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Relativistic N-body simulations
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Going beyond linear perturbation theory

On intermediate to small scales, d < 10Mpc, density perturbations can become large.
Inside a galaxy we have δ ∼ 105 and even inside a galaxy cluster the motion of
galaxies is decoupled from the Hubble flow, clusters due not expand. ⇒We have to
treat clustering non-linearly .
But the gravitational potential of a galaxy remains small,

Φ ∼ Rs/D ∼
2× 1012km

10kpc
' 10−5

Therefore, in Newtonian (longitudinal) gauge, metric perturbations remain small.
In the past, this together with the smallness of peculiar velocities has been used to
argue that Newtonian N-body simulations are sufficient. Caveats:

We start simulations at z ∼ 100 when the box size is comparable to the horizon
and neglecting radiation is not a good approximation (aim: 1% accuracy).

Neutrino velocities, even for massive neutrinos are not very small at z = 100.

The relativistic gravitational field has 6 degrees of freedom (2 helicity 0, 2 helicity 1
and 2 helicity 2) and Newtonian simulations only consider 1 of them.

Observations are made on the relativistic, perturbed lightcone. We want to
correctly simulate this.
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Relativistic N-body simulations

A full relativistic N-body simulation might, starting from the initial metric and particle
positions at time t1

1 Move dark matter particles (and baryons) along geodesics of the metric at t1 to
obtain their position at t1 + ∆t .

mṗµ + Γµαβpαpβ = 0

2 Compute the energy-momentum tensor with a particle to mesh projection.

Tµν(x, t) = m−1
∑

n

pµ(t)pν(t)δ(x− xn(t))

3 Solve Einstein’s equations to determine the metric at t1 + ∆t .
4 Return to step 1 replacing t1 by t1 + ∆t1

In practice the time-stepping is replaced by a staggered leap-frog to render his
procedure stable.
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Relativistic N-body simulations

At present, we do not solve the full Einstein equations.
We work in longitudinal gauge (K = 0),

ds2 = −a2e2Ψdt2 − 2a2Bidtdx i + a2[e−2Φδij + hij ]dx idx j

and use the fact that Ψ ' Φ is very small. However, spatial derivatives, ∇Ψ/H ∼ V
and second derivatives, ∆Ψ/H2 ' D are not small.

Therefore, when computing the Einstein tensor go only to first order in the gravitational
potentials and their time derivatives. We include quadratic terms of first spatial
derivatives and all orders for second spatial derivatives. Since the Einstein tensor is
linear in its second derivatives of the metric, this simplifies the equations significantly.

We include also vector and tensor perturbations only at linear order. They are induced
from scalar perturbations at second order and always remains small.

When solving the geodesic equation we also neglect tensor perturbations as they only
enter together with v2 and are very suppressed.
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Gevolution

The code doing this is ’gevolution’. It is written by Julian Adamek and extensively uses
packages of ’LATfield2’ written for gevolution by David Daverio.
The code is publicly available at github.com/gevolution-code/gevolution-1.0

(Figure by Julian Adamek)
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Gevolution

(Figure by Julian Adamek)
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Spectra from gevolution
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Spectra from gevolution
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Performance of gevolution
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Conclusions

At sufficiently large scales and at early times structure formation can be treated
within linear cosmological perturbation theory.

Perturbations variables are usually gauge dependent, but observations are not.

In cosmology we can observe directions, redshifts, fluxes, · · · , but not distances.
Therefore, the real space correlation function and the power spectrum are model
dependent.

Galaxy number counts contain apart from density and rsd an important lensing
term which is most relevant for z 6= z′ correlations and at high redshift.

At intermediate scales we need simulations as density fluctuations become large.

Relativistic weak field simulations are not much more costly than Newtonian
simulations and they capture all the relativistic effects relevant in cosmology.
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