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Introduction

The observed Universe is not homogeneous and isotropic. It contains galaxies,
clusters of galaxies, voids, filaments...

M. Blanton and the Sloan Digital Sky Survey Team.
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Introduction

@ We assume that on large scales there is a well defined mean density and on
intermediate scales, the density differs little from it.
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Introduction

@ We assume that on large scales there is a well defined mean density and on
intermediate scales, the density differs little from it.

@ This is a highly non-trivial assumption, which is best justified by the isotropy of the
cosmic microwave background, the CMB.

@ Under the hypothesis that cosmic structure grew out of small initial fluctuations we
can study their evolution using perturbation theory.

@ At late times and sulfficiently small scales fluctuations of the cosmic density are not
small. The density inside a galaxy is about 10° times higher than the mean density
of the Universe.

@ Perturbation theory is then not adequate and we need N-body simulations to study
structure formation on galaxy - cluster scales of a few Mpc and less.

@ Since this is mainly relevant on scales much smaller than the Hubble scale
(3000h~'Mpc), it has been studied in the past mainly with non-relativistic
simulations. Since a couple years several groups have started to develop also
relativistic simulations.
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Linear cosmological perturbation theory
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Linear perturbation theory: Gauge transformation

Splitting the true metric into a background and a perturbation,
gudxtdx” = &(t) [—(1 + 2A)dt* — 2Bditdx’ + (1 + 2H,)y;0x dx! + 2H,»jdxidxf]
= & () [lur + €0nun] X" X" =[G + €5Gu] dX* dX”

is not unique. Under a linearized coordinate transformation (gauge transformation),
xt — x* 4+ eX*, the metric (and any other tensor field) changes like

v > Guv + eLxGuv 0Guv = 6Guw + LxGuw -
The same is true for the energy momentum tensor,
7-[L1/ = T;u/ + 567—;;1/ 5 5T;u/ = 57—;1‘11 + LX Tp,u .

A variable (tensor field) V is called gauge invariant if it does not change under gauge
transformations. As we see from the above equations, this happens if LxV =0V X,
hence V = constant. (Stewart Walker lemma).
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x" — x* 4 eX*", the metric (and any other tensor field) changes like

v > Guv + eLxGuv 0Guv = 6Guw + LxGuw -
The same is true for the energy momentum tensor,
Tp.u = T;u/ + 567—;1,1/ 5 57—;;‘11 — 57—;1‘11 + LX Tp,u .

A variable (tensor field) V is called gauge invariant if it does not change under gauge
transformations. As we see from the above equations, this happens if LxV =0V X,
hence V = constant. (Stewart Walker lemma).

Furthermore, even if the total metric and energy momentum tensor satisfy Einstein’s
equation, this is in general not true for arbitrary splits into a background and a
perturbation. We call a split 'admissible’ if it is true. For an admissible split also the
perturbations satisfy Einstein’s equations.
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Linear perturbation theory: Gauge invariant variables

We typically split spatial tensor fields into helicity zero (scalar) helicity one (vector) and
helicity two (tensor) parts. These do not mix within linear perturbation theory due to
rotational symmetry of the background. The same is true for each Fourier component
(translational symmetry)

1
Bi=V;B+ B,(V) s H,'j = | ViV = ;A H(S) + V,‘H-(V) + VjH,.(V) + H,-(-T)
3 i i

VB =V HY =v'HD =H =0.

I shall not discuss vector perturbations any further. They seem not to be relevant in
cosmology.

In the background Friedmann-Lemaitre universe the Weyl tensor C*, .z and the
anisotropic stress tensor I, vanish = their perturbations are gauge-invariant,

Muw = Ty — (p+P)UuuV - Pg,. .

Here p and u are defined by T/'v” = —pu", u*u, = —1 and T/ 4 p = 3P.
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Linear perturbation theory: Gauge invariant variables

For scalar perturbations we can define the so called Bardeen potentials. In Fourier
space (k = wavenumber) they are given by

V = A-Hk'lo—k's5,
¢ = —HL—%H(S)+HK_1a:—R+Hk_1a
o = K'HO_B R = H 4 LHS.

3
The non-vanishing components of C}; ; and I, are then given by
Ej = CYuu=-C%= —%

ivj

{(w + o), — %A(\U + o)y

87TG32 |_|,'j

’
(V= @) — g AWV — ®)y;.

For the last eqgn. we used Einstein’s equation.
In longitudinal (Newtonian) gauge, B = H®) = 0, the perturbed metric is given by
G = —24° [wart2 n <1>'y,-,-dx’dxj} .

Tensor perturbations are gauge invariant (there are no tensor-type
gauge-transformations).
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Linear perturbation theory: Gauge invariant variables

Apart from the anisotropic stress, the entropy perturbation

r—(6P+C—§6 )/p
= 00)/P

is gauge invariant. To obtain gauge invariant perturbations of the velocity and density
perturbations, 6 = (p — p)/p one has to combine them with metric perturbations. The
most common combinations are

vV = V—%HT:Vang

Ds = 6+3(1+w)H(k 2Hr —k 'B) =8,

D = 5'ong+3(1+W)%V:6+3(1+W)%(V_B)
= D43(1 Wy,

Dy = §+3(1+w) (HL+1§H<S)) _ 531 1 w)o

= Ds—3(1+w)o.
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Density perturbation spectrum

The resulting density perturbation spectrum depends on the choice of the perturbation

variable only on very large scales, k < Hg‘.
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Comparing density fluctuations in different gauges:
comoving gauge, D (blue), longitudinal gauge, Ds (red) and

spatially flat gauge, Dy ( )
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Linear perturbation theory: Perturbation equations

Einstein’s equations (H = a/a = Ha)

4w Ga?pD

4rGa(p+ P)V
8rGa2PnN®)

47 GaPp [%D +c2Ds + wr]
8rGa?Pn(M

Ruth Durrer (Université de Genéve)
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4w Ga?pD

4rGa(p+ P)V
8rGa2PnN®)
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Conservation equations for scalar perturbations (w = P/p, ¢ = P/p)

D—3wHD = —<1—

V+HV = k{\v-i-

Ruth Durrer (Université de Genéve)
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Linear perturbation theory: Perturbation equations

Einstein’s equations (H = a/a = Ha)

4rGa’pD = —(k* —3K)d (00)
4G (p+P)V = k (H\U + <i>) (0)
8rGEPNS) = K2 (o - W) (i #j)
4nGelp [0+ cEDs+wr] = &+ 2Hb + b+ [27+ 12— S| v (i
8rGaPN) = HD L 21HD 4 (2K + k?) HT) (tensor)

Conservation equations for scalar perturbations (w = P/p, ¢ = P/p)

- 3K

D-3wHD = - <1 - ﬁ) [(1+ WKV + 23wn]
oy G o, W o 2( K\ w
VY = k{\U+1+WD+1+WF 3(1 k2>1+wn}'

Bardeen equation for scalar perturbations
&+ 3H(1+A)d + [3(02 —W)H® — (243w + 30K + cﬁkz] @

87rGa2P
k2

{’HI‘I + [2H + 3HZ(1 — & /w)|n — §k2n + %r]
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Linear perturbation theory: Simple solutions

We consider adiabatic fluctuations of a perfect fluid (F = N = 0) with K = 0 and
w = ¢2 =constant. In this case the Bardeen eqn. simplifies to

. . 2. _ 2 71ig
O+ 3H(1 +w)d + 3wk =0, H_1+3wt =3

with solution 1
b = 3 [Ajg(cskt) + Byq(cskt)]

On large scales, cskt < 1 the growing mode « A is constant, on small scales, cskt > 1
it oscillates and decays.

For radiation, w = ¢ = 1/3, g = 1.

The case of dust, c2 = w = 0 has been treated apart. In this case the solution is

B
(kt)>

P=A+

Again, the growing mode is constant.
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Bardeen potential

Starting from scale invariant initial conditions, (|W[?)k® = As(k/Ho)"", n = 1 one finds
today a Bardeen potential of roughly the following form:

10-2 1
k [h/Mpc]
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Linear perturbation theory: Simple solutions

From the Bardeen potential we can now compute the density and velocity

perturbations.
For dust we obtain for the growing modes

Vot Dxt?xa.

For radiation we find, x = kt/v/3

D, = 2A {cos(x) - %sin(x)] )
vV = _gD; = @ {sin(x) + %cos(x) - % sin(x)

These are the acoustic oscillations which we see in the CMB temperature anisotropy

spectrum.
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CMB spectrum
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What do we observe?

Measured quantities must be gauge invariant. They do not depend on the coordinate
system in which we compute them.

We have long ago (1990-95) computed what we measure (within linear perturbation
theory) when we masure CMB anisotropies. A simplified formula neglecting Silk
damping is (RD 1990)

. o, .
ATT(“) _ %Dgu \/}"W+w+¢] (tdec,xdec)+/ (U + &) (L x(t)) dt .
t

dec
This result is obtained by studying lightlike geodesics.

To go beyond this and take into account polarisation and Silk damping, we have to
study the propagation of photons with a Boltzmann equation approach.
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The observed number count

For density perturbations (even neglecting bias and non-linearities) it is more
complicated. We consider the following measurement: we count the galaxies in a small
redshift element dz around redshift z and solid angle d2, around a direction n. To
obtain the fluctuation of this number count we subtract from it the mean number of
galaxies inside a redshift bin dz and a solid angle d2, and we also divide by this mean,

N(z,m) - N(2)

A(z,n) = NG)

Assuming that the number of galaxies is proportional to the matter density times the
volume we have
dV(z,n)

dN(z,n) = p(z,n)dV(z,n) = p(z,n)v(z,n)dzdn v(z,n) = “drd
n

To continue we have also to take into account that also the redshift and the direction

from which we see the galaxy are perturbed. Taking this all into account we find the
perturbed expression for the observed number counts,
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The observed number count

Ag(n,z,m,) = bD+%[¢+&W-m]fobQHV+

% 2-5s
(ﬁJr reH

rS . .
+Ss—be) <W+V~n+/ dr(¢+\u)
0

_ Is
_(2—58)b+ W 4 2 55/ or [2(0+ W) - ]
2rs Jo

(Bonvin & RD 2011, Challinor & Lewis 2011)

The first term is simply the biased density contrast in comoving gauge. The second

term is the redshift space distortion (the radial volume distortion) the last term is the
(the transversal volume distortion). The other terms (Doppler, Shapiro

time delay, integrated Sachs Wolfe term) are relevant mainly on very large scales.

m, is the magnitude limit of the survey and L. is the limiting luminosity.
be is the evolution bias,

§s = M is the magnification bias.
2 OdlogL =L,
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The observed number count

The observed number count fluctuation is not a function of position but a function of
(observed) direction n and redshift z; (n, z) are observable coordinates on the
background lightcone.

We cannot observe distances. To infer a distance from observations in cosmology, we
always use a model. Hence the real space correlation function and its Fourier
transform, the power spectrum are model dependent.

We can directly observe the angular-redshift correlation function,

&n-n',z,2) = (A(n,2)A(N, 2))
or its angular power spectrum, C¢(z,z’), n-n’ = cosé

£0,2,7) = 417 > (20+1)Ci(z,2")Pi(cos 0)
4

Ruth Durrer (Université de Genéve) Structure Formation in the Universe Marseille, Mai 2018 19/35



The observed number count

The distance between two galaxies in directions n and n’ at redshifts z and z’, for
K=0

d=+r(z)2+r(z')2 —2r(z)r(z') cos 8
depends on the cosmological model via
4 dz’

1 V4
r(z) = o H(z/):ﬁo./o V(1 + 23 + Quef(2)

One therefore has to be very careful when estimating cosmological parameters via the
real space correlation function or the power spectrum.
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The observed number count

Parameter dependence of the real

space correlation function.
(Figure by F. Montanari)
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Density and RSD

Most present analyses take into account only the density and rsd terms and consider s
small survey in direction n in the sky.

Using kV/H = H~'D = f(z)D, f(z) = dlog D/dlog a ~ Qm(2)*%" one finds
Eons(d, 2) = £(d) TE(2) [Bo(2) Po() — B2(2) Pa(k) + Ba(2)Pa(i)] ,

Pass(k, 2) = P(K)T5(2) [Bo(2) Po(11) + B2(2)Pe(1) + Ba(2) Pa(p)] ,
v 2bf | f° 4bf  4f _ 8f

e == _ - - =
/30—b+3+5, ﬁ2—3+7, 4= 55

= C0S7,

35

T =
Il
~ 0>
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Lensing

The lensing term can become very important at high redshift and for different redshifts,

z#Z.
Contributions to the power spectrum at redshift 2/ = z=3,Az=0.3
(from Bonvin & RD ’11)
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Measuring the lensing potential

Well separated redshift bins measure mainly the lensing-density correlation:
(A(n,2)A(N,2) = (AL(n,2)5(n',2)) z> 2

Al(n, z) = (2 - 55(2))k(n, 2)
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The radial power spectrum
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Relativistic N-body simulations
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Going beyond linear perturbation theory

On intermediate to small scales, d < 10Mpc, density perturbations can become large.
Inside a galaxy we have § ~ 10° and even inside a galaxy cluster the motion of
galaxies is decoupled from the Hubble flow, clusters due not expand. = We have to
treat clustering non-linearly .

Ruth Durrer (Université de Genéve) Structure Formation in the Universe Marseille, Mai 2018 27/35



Going beyond linear perturbation theory

On intermediate to small scales, d < 10Mpc, density perturbations can become large.
Inside a galaxy we have § ~ 10° and even inside a galaxy cluster the motion of
galaxies is decoupled from the Hubble flow, clusters due not expand. = We have to
treat clustering non-linearly .

But the gravitational potential of a galaxy remains small,

2 x10"”km

& ~ ~ ~107°
As/D 10kpc 10

Therefore, in Newtonian (longitudinal) gauge, metric perturbations remain small.
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argue that Newtonian N-body simulations are sufficient. Caveats:

@ We start simulations at z ~ 100 when the box size is comparable to the horizon
and neglecting radiation is not a good approximation (aim: 1% accuracy).

@ Neutrino velocities, even for massive neutrinos are not very small at z = 100.

@ The relativistic gravitational field has 6 degrees of freedom (2 helicity 0, 2 helicity 1
and 2 helicity 2) and Newtonian simulations only consider 1 of them.

@ Observations are made on the relativistic, perturbed lightcone. We want to
correctly simulate this.
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Relativistic N-body simulations

A full relativistic N-body simulation might, starting from the initial metric and particle
positions at time

@ Move dark matter particles (and baryons) along geodesics of the metric at t to
obtain their position at t; + At.

mpt + 4, pp’ =0
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A full relativistic N-body simulation might, starting from the initial metric and particle
positions at time

@ Move dark matter particles (and baryons) along geodesics of the metric at t to
obtain their position at t; + At.

mp + T4 ,pp” =0

@ Compute the energy-momentum tensor with a particle to mesh projection.

TH(x, 1) =m~ Y pH(1)p" (1)5(X — Xn(t))

© Solve Einstein’s equations to determine the metric at t; + At.
© Return to step 1 replacing t by t + Aty

In practice the time-stepping is replaced by a staggered leap-frog to render his
procedure stable.
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Relativistic N-body simulations

At present, we do not solve the full Einstein equations.
We work in longitudinal gauge (K = 0),
ds? = —a*e?V dt® — 222 Biditdx’ + a’[e 25 + hy]ax'dx’/
and use the fact that ¥ ~ & is very small. However, spatial derivatives, V¥ /H ~ V
and second derivatives, AV /#2 ~ D are not small.

Therefore, when computing the Einstein tensor go only to first order in the gravitational
potentials and their time derivatives. We include quadratic terms of first spatial
derivatives and all orders for second spatial derivatives. Since the Einstein tensor is
linear in its second derivatives of the metric, this simplifies the equations significantly.
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ds? = —a*e?V dt® — 222 Biditdx’ + a’[e 25 + hy]ax'dx’/
and use the fact that ¥ ~ & is very small. However, spatial derivatives, V¥ /H ~ V
and second derivatives, AV /#2 ~ D are not small.

Therefore, when computing the Einstein tensor go only to first order in the gravitational
potentials and their time derivatives. We include quadratic terms of first spatial
derivatives and all orders for second spatial derivatives. Since the Einstein tensor is
linear in its second derivatives of the metric, this simplifies the equations significantly.

We include also vector and tensor perturbations only at linear order. They are induced
from scalar perturbations at second order and always remains small.

When solving the geodesic equation we also neglect tensor perturbations as they only
enter together with v2 and are very suppressed.
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Gevolution

The code doing this is ’gevolution’. It is written by Julian Adamek and extensively uses
packages of 'LATfield2’ written for gevolution by David Daverio.

The code is publicly available at github.com/gevolution-code/gevolution-1.0

(Figure by Julian Adamek)
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Gevolution

(Figure by Julian Adamek)

Ruth Durrer (Université de Genéve) Structure Formation in the Universe Marseille, Mai 2018 31/35



Spectra from gevolution
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Spectra from gevolution
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Difference of tensor spectra in presence of massive neutrinos.
(From Adamek et al., 2017)
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Performance of gevolution
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Gevolution has been run on the Swiss Supercomputer 'Piz Daint’.
These simulations are among the largest worldwide.
(From Adamek et al., 2017)
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Conclusions

@ At sufficiently large scales and at early times structure formation can be treated
within linear cosmological perturbation theory.
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@ Perturbations variables are usually gauge dependent, but observations are not.

@ In cosmology we can observe directions, redshifts, fluxes, - - -, but not distances.
Therefore, the real space correlation function and the power spectrum are model
dependent.

@ Galaxy number counts contain apart from density and rsd an important lensing
term which is most relevant for z # z’ correlations and at high redshift.

@ Atintermediate scales we need simulations as density fluctuations become large.

@ Relativistic weak field simulations are not much more costly than Newtonian
simulations and they capture all the relativistic effects relevant in cosmology.
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