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B.2 Cosmologie au-delà de l’hypothèse d’homogénéité 293

modèles « en gruyère » (Swiss-cheese models en anglais), que l’on baptisera « grunivers »
dans la suite, sont des candidats naturels. Leur construction est la suivante (voir Fig. B.1) :
à partir d’un univers homogène, choisir une sphère comobile, puis concentrer la matière
qu’elle contient en son centre. Ceci forme un « trou » au sein du « fromage » homogène
initial. À l’intérieur du trou, la géométrie spatio-temporelle est décrite par la métrique de
Schwarzschild (ou Kottler si � ”= 0), tandis qu’à l’extérieur la métrique de FL reste valable.
La procédure décrite ci-dessus assure que ces deux géométries se raccordent parfaitement à
la frontière du trou, formant un espace-temps bien défini. Physiquement parlant, l’intérieur
du trou peut être vu comme représentant le voisinage d’un objet gravitationnellement lié,
tel qu’une galaxie ou un amas de galaxie. La masse centrale est donc choisie de l’ordre de
M ≥ 1011M§ (galaxie) ou M ≥ 1015M§ (amas). Le rayon comobile du trou correspondant,
Rh = (3M/4fifl0)1/3, où fl0 est la masse volumique moyenne de l’Univers aujourd’hui, vaut
alors Rh ≥ 1 Mpc pour une galaxie, Rh ≥ 20 Mpc pour un amas.

sphère comobile Kottler

FL
M

FL

Figure B.1 Construction d’un grunivers à partir d’un modèle homogène et isotrope (FL).

L’opération peut ensuite être répétée pour d’autres sphères, toutes disjointes les unes
des autres, d’où l’aspect « en gruyère » du résultat. La quantité de trous introduits dans
le modèle est quantifié par le paramètre d’homogénéité

f © lim
V æŒ

VFL

V
, (B.9)

où V représente le volume d’une région du modèle, et VFL la portion de ce volume occupé par
des régions homogènes. Les cas f = 0 ou f = 1 représentent donc respectivement un univers
rempli de masses ponctuelles ou un univers parfaitement homogène. L’avantage principal
de cette construction est qu’elle génère un modèle potentiellement très inhomogène, sans
toutefois a�ecter sa dynamique d’expansion ; elle est par conséquent très adaptée à l’étude
de la question qui nous intéresse ici.

L’analyse de la propagation de la lumière à travers un grunivers, décrite en détails
dans les § 6.2 et § 6.4, peut être résumée comme suit :

1. La relation entre paramètre a�ne v et décalage spectral z est très peu a�ectée
par la présence des inhomogénéités. La correction relative due à un trou est ainsi
(z ≠ zFL)/zFL = O(rS/Rh), où rS © 2GM est le rayon de Schwarzschild de la masse
centrale. Cette correction est donc de l’ordre de 10≠8 pour un trou galactique et
10≠6 pour un trou contenant un amas.

2. Les e�ets de distorsions de Weyl à l’intérieur des trous sont négligeables en première
approximation.

3. La focalisation de Ricci est, de manière e�ective, réduite par le facteur f . Tout se
passe donc, pour le calcul de la matrice de Jacobi et donc des distances, comme si la
lumière se propageait dans un univers homogène de densité réduite fl æ ffl.

FLRW

Schwarzschild
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III. BUILDING A COSMOLOGY USING
JUNCTION CONDITIONS

In this paper we will take a bottom-up approach to cos-
mological modelling. This will involve considering cosmo-
logical models that are constructed from large numbers
of cells, that can be put next to each other to form a
periodic lattice structure. The shape of each cell will be
taken to be a regular polyhedron, and will be assumed
to be identical to every other cell, up to rotations, reflec-
tions and translations.

The physical systems that we intend to model with
these cells will depend on the size of cell that we are con-
sidering. For example, for cells that are approximately
the size of the homogeneity scale (about 100 Mpc), we
could consider modelling clusters of galaxies, as illus-
trated in Fig. 1. Other systems, such as individual
galaxies, could equally well be modelled with cell sizes
of the order of about 1 Mpc. The only requirement we
have is that the system must satisfy the requirements of
the post-Newtonian formalism. Specifically, this means
that v ⌧ c and p ⌧ ⇢, so that the bulk of the interior of
each cell is described by Newtonian and post-Newtonian
gravitational physics.

The post-Newtonian formalism is expected to work
well in the regime of non-linear density contrasts, and
so should be expected to be adequate for modelling most
aspects of the gravitational fields of galaxies and clusters
of galaxies. This formalism is, however, limited to scales
much smaller than the cosmological horizon. We there-
fore require each of our cells to be much smaller than
the Hubble radius, H�1

0 . A violation of this requirement
would result in matter at the boundary of a cell moving
at close to the speed of light. We also assume each cell
is filled with normal matter, so that pressures are small
with respect to energy densities.

We note that the post-Newtonian framework cannot,
and should not, be used to describe multiple cells simul-
taneously. However, due to the periodicity of our lattice
structure, we only need to know the space-time geometry
of any one cell, and its boundary conditions with neigh-
bouring cells. As we will show below, this information
is su�cient to tell us how we should expect the entire
Universe to evolve.

Let us now turn to a more detailed consideration of
the conditions required in order to join two cells together
at a boundary. First and foremost, the cells must satisfy
certain smoothness requirements across their respective
boundaries, known as the Israel junction conditions, if
their union is to be a solution to Einstein’s equations.
These conditions, in the absence of surface layers, are
given by [24]

[�ij ] = 0 (21)

[Kij ] = 0 , (22)

where ['] = '(+) � '(�) denotes the jump across the
boundary for any quantity ', and the i and j indices de-
note tensor components on the boundary. The (+) and

FIG. 1. Two adjacent cubic cells, with example matter
content, consisting of filaments and voids. The second cell is
the mirror image of the first. This figure was produced using
an image from [25].

(�) superscripts here show that a quantity is to be eval-
uated on either side of the boundary (i.e. on the sides
labelled by + or �, respectively).
In these equations, �ij is the induced metric on the

boundary, and Kij is the extrinsic curvature of the
boundary, defined by

�ij ⌘
@xa

@⇠i
@xb

@⇠j
gab (23)

and

Kij ⌘
@xa

@⇠i
@xb

@⇠j
na;b , (24)

where ⇠i denotes the coordinates on the boundary, and
na is the space-like unit vector normal to the boundary.
In our construction we choose to consider reflection

symmetric boundaries. The Israel junction conditions
can then be simplified. The situation we wish to con-
sider is illustrated in Fig. 2, for two cubic cells. We
use xa and xã to denote the coordinates used within the
first and second cells, respectively. Reflection symmetry
means that Eq. (21) is automatically satisfied. The sec-
ond junction condition, given by Eq. (22), can be written
as

@xa

@⇠i
@xb

@⇠j
n(+)
a;b =

@xã

@⇠i
@xb̃

@⇠j
n(�)

ã;b̃
, (25)

where n(+)
a and n(�)

ã are outward and inward pointing
normals, in the first and second cells, respectively. They
are shown in Fig. 2. Now, mirror symmetry implies that

n(�)
ã = �n(+)

a . Symmetry therefore demands that

@xa

@⇠i
@xb

@⇠j
n(+)
a;b = �@xã

@⇠i
@xb̃

@⇠j
n(+)

ã;b̃
. (26)

This implies that Kij = �Kij , or, in other words, that
the extrinsic curvature must vanish on the boundary of
every cell, i.e.

Kij = 0 . (27)
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FIG. 1. Two adjacent cubic cells, with example matter
content, consisting of filaments and voids. The second cell is
the mirror image of the first. This figure was produced using
an image from [25].
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where ⇠i denotes the coordinates on the boundary, and
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@xa

@⇠i
@xb

@⇠j
n(+)
a;b =

@xã
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where n(+)
a and n(�)

ã are outward and inward pointing
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n(�)
ã = �n(+)

a . Symmetry therefore demands that
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a;b = �@xã
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@⇠j
n(+)

ã;b̃
. (26)

This implies that Kij = �Kij , or, in other words, that
the extrinsic curvature must vanish on the boundary of
every cell, i.e.

Kij = 0 . (27)
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Hereafter Sec. II is a quick reminder on how to derive
the Friedmann equations in Newtonian cosmology from a
purely energetic approach. This draws a path along which
I compare, in Sec. III, the properties of a discrete and a
continuous model. This comparison shows that Gauss’s
law is a key feature of Newtonian gravity for those two
models to match. I then repeat in Sec. IV the same
analysis with an alternative toy-theory of gravitation,
namely Yukawa gravity, and discuss the trustworthiness
of cosmological tests of modified theories of gravity.

II. HOMOGENEOUS NEWTONIAN
COSMOLOGY

Throughout this article, I will adopt Newtonian theory
as the standard theory of gravity. It is indeed gener-
ally assumed, though debatable, that Newtonian gravity
is a good approximation of GR in a cosmological con-
text, provided light is not involved1. This section is a
reminder about Newtonian cosmology, where the Fried-
mann equation governing the expansion of the Universe
can be derived from energetic considerations.

A. Standard energetic approach

Consider a universe, infinite or not, homogeneously
filled with a density fl of matter. This system is allowed to
homothetically expand or contract so that fl is a function
of time. Pick an arbitrary origin within this system. For
the distribution of matter to remain homogeneous and its
flow to be isotropic, the matter velocity field must obey
Hubble’s law

v(t, x) = H(t)x. (1)

If one follows the motion of an arbitrary particle within the
flow, its position as a function of time (the displacement
field) is then given by

x(t2) = a(t2)
a(t1) x(t1), (2)

for any two t1, t2, and where the scale factor a(t) is a
function of time such that ȧ/a = H.

Consider a spherical region around the origin with
constant mass M . It is a closed system, in the sense that

1 In Newton’s theory, the gravitational charge is mass rather than
energy. This has two direct consequences. First, light being
massless it cannot fall, which implies no gravitational lensing,
in particular no gravitational focusing, hence wrong predictions
for the angular or luminosity distance-redshift relations even
in homogeneous cosmology. Second, light cannot be a source
of Newtonian gravitation, which makes this theory unable to
correctly describe e.g. the cosmic expansion dynamics during the
radiation-dominated era.

we follow the motion of each particle contained in this
region, hence its radius r(t) evolves according to Eq. (2).
Besides, mass conservation implies 4fifl(t)r3(t)/3 = M .

As in any closed system, the total (kinetic plus gravita-
tional) energy E of the ball is conserved with time. It is
straightforward to calculate its expression as a function
of the radius:

E = Ekin + Egrav (3)

=
⁄

d3x
flv

2

2 ≠

⁄
d3x d3xÕ Gfl

2

|x ≠ xÕ|
(4)

= 3
10MH

2
r

2
≠

3
5

GM
2

r
, (5)

whence

H
2 = 8fiGfl

3 + 10
3

E

M

1
r2 . (6)

By taking the present time t0 as a reference, in the sense
that a(t0) = 1, we can turn the latter equation into a
more familiar form: define K = ≠10E/[3Mr

2
0] and get

H
2 = 8fiGfl

3 ≠
K

a2 , (7)

which is the first Friedmann equation. Note that for this
equation to be independent from the region we started
with, i.e. for K to be the same whatever the reference
radius r0, energy cannot be homogeneously distributed
in the Universe, more precisely we need E Ã r

2
0. This

does not contradict the homogeneity requirement, on
the contrary it does ensure it2. The second Friedmann
equation

ä

a
= ≠

4fiGfl

3 (8)

is then directly obtained by taking the time derivative of
Eq. (7), and using mass conservation.

Note finally that we could have accounted for a cos-
mological constant by simply adding a term of the form
≠M�r

2
/10 to the gravitational potential energy.3

B. Discussion

In the above derivation, the dynamics of cosmic expan-
sion is an exchange between kinetic energy and gravita-
tional potential energy. The deceleration of expansion is

2 When this assumption is broken, we fall into the more general
class of models which are spherically symmetric but inhomo-
geneous, known in GR as the Lemaître-Tolman-Bondi (LTB)
models—see e.g. Ref. [56]. The function ≠10E(r0)/[3M(r0)r2

0 ]
then corresponds to the spatial curvature function usually denoted
k(r) of the LTB solution.

3 In a Newtonian context, the cosmological constant cannot be
included if gravitation is interpreted as an interaction between
massive bodies; it requires a field formulation. The cosmological
constant is then an additional, homogeneous, source of the Poisson
equation: �� = 4fiGfl ≠ �.
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analysis with an alternative toy-theory of gravitation,
namely Yukawa gravity, and discuss the trustworthiness
of cosmological tests of modified theories of gravity.

II. HOMOGENEOUS NEWTONIAN
COSMOLOGY

Throughout this article, I will adopt Newtonian theory
as the standard theory of gravity. It is indeed gener-
ally assumed, though debatable, that Newtonian gravity
is a good approximation of GR in a cosmological con-
text, provided light is not involved1. This section is a
reminder about Newtonian cosmology, where the Fried-
mann equation governing the expansion of the Universe
can be derived from energetic considerations.

A. Standard energetic approach

Consider a universe, infinite or not, homogeneously
filled with a density fl of matter. This system is allowed to
homothetically expand or contract so that fl is a function
of time. Pick an arbitrary origin within this system. For
the distribution of matter to remain homogeneous and its
flow to be isotropic, the matter velocity field must obey
Hubble’s law

v(t, x) = H(t)x. (1)

If one follows the motion of an arbitrary particle within the
flow, its position as a function of time (the displacement
field) is then given by

x(t2) = a(t2)
a(t1) x(t1), (2)

for any two t1, t2, and where the scale factor a(t) is a
function of time such that ȧ/a = H.

Consider a spherical region around the origin with
constant mass M . It is a closed system, in the sense that

1 In Newton’s theory, the gravitational charge is mass rather than
energy. This has two direct consequences. First, light being
massless it cannot fall, which implies no gravitational lensing,
in particular no gravitational focusing, hence wrong predictions
for the angular or luminosity distance-redshift relations even
in homogeneous cosmology. Second, light cannot be a source
of Newtonian gravitation, which makes this theory unable to
correctly describe e.g. the cosmic expansion dynamics during the
radiation-dominated era.

we follow the motion of each particle contained in this
region, hence its radius r(t) evolves according to Eq. (2).
Besides, mass conservation implies 4fifl(t)r3(t)/3 = M .

As in any closed system, the total (kinetic plus gravita-
tional) energy E of the ball is conserved with time. It is
straightforward to calculate its expression as a function
of the radius:

E = Ekin + Egrav (3)
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By taking the present time t0 as a reference, in the sense
that a(t0) = 1, we can turn the latter equation into a
more familiar form: define K = ≠10E/[3Mr

2
0] and get

H
2 = 8fiGfl

3 ≠
K

a2 , (7)

which is the first Friedmann equation. Note that for this
equation to be independent from the region we started
with, i.e. for K to be the same whatever the reference
radius r0, energy cannot be homogeneously distributed
in the Universe, more precisely we need E Ã r

2
0. This

does not contradict the homogeneity requirement, on
the contrary it does ensure it2. The second Friedmann
equation

ä

a
= ≠

4fiGfl

3 (8)

is then directly obtained by taking the time derivative of
Eq. (7), and using mass conservation.

Note finally that we could have accounted for a cos-
mological constant by simply adding a term of the form
≠M�r

2
/10 to the gravitational potential energy.3

B. Discussion

In the above derivation, the dynamics of cosmic expan-
sion is an exchange between kinetic energy and gravita-
tional potential energy. The deceleration of expansion is

2 When this assumption is broken, we fall into the more general
class of models which are spherically symmetric but inhomo-
geneous, known in GR as the Lemaître-Tolman-Bondi (LTB)
models—see e.g. Ref. [56]. The function ≠10E(r0)/[3M(r0)r2

0 ]
then corresponds to the spatial curvature function usually denoted
k(r) of the LTB solution.

3 In a Newtonian context, the cosmological constant cannot be
included if gravitation is interpreted as an interaction between
massive bodies; it requires a field formulation. The cosmological
constant is then an additional, homogeneous, source of the Poisson
equation: �� = 4fiGfl ≠ �.
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ä

a
= ≠

4fiGfl

3 (8)

is then directly obtained by taking the time derivative of
Eq. (7), and using mass conservation.

Note finally that we could have accounted for a cos-
mological constant by simply adding a term of the form
≠M�r

2
/10 to the gravitational potential energy.3

B. Discussion

In the above derivation, the dynamics of cosmic expan-
sion is an exchange between kinetic energy and gravita-
tional potential energy. The deceleration of expansion is

2 When this assumption is broken, we fall into the more general
class of models which are spherically symmetric but inhomo-
geneous, known in GR as the Lemaître-Tolman-Bondi (LTB)
models—see e.g. Ref. [56]. The function ≠10E(r0)/[3M(r0)r2

0 ]
then corresponds to the spatial curvature function usually denoted
k(r) of the LTB solution.

3 In a Newtonian context, the cosmological constant cannot be
included if gravitation is interpreted as an interaction between
massive bodies; it requires a field formulation. The cosmological
constant is then an additional, homogeneous, source of the Poisson
equation: �� = 4fiGfl ≠ �.

2

Hereafter Sec. II is a quick reminder on how to derive
the Friedmann equations in Newtonian cosmology from a
purely energetic approach. This draws a path along which
I compare, in Sec. III, the properties of a discrete and a
continuous model. This comparison shows that Gauss’s
law is a key feature of Newtonian gravity for those two
models to match. I then repeat in Sec. IV the same
analysis with an alternative toy-theory of gravitation,
namely Yukawa gravity, and discuss the trustworthiness
of cosmological tests of modified theories of gravity.

II. HOMOGENEOUS NEWTONIAN
COSMOLOGY

Throughout this article, I will adopt Newtonian theory
as the standard theory of gravity. It is indeed gener-
ally assumed, though debatable, that Newtonian gravity
is a good approximation of GR in a cosmological con-
text, provided light is not involved1. This section is a
reminder about Newtonian cosmology, where the Fried-
mann equation governing the expansion of the Universe
can be derived from energetic considerations.

A. Standard energetic approach

Consider a universe, infinite or not, homogeneously
filled with a density fl of matter. This system is allowed to
homothetically expand or contract so that fl is a function
of time. Pick an arbitrary origin within this system. For
the distribution of matter to remain homogeneous and its
flow to be isotropic, the matter velocity field must obey
Hubble’s law

v(t, x) = H(t)x. (1)

If one follows the motion of an arbitrary particle within the
flow, its position as a function of time (the displacement
field) is then given by

x(t2) = a(t2)
a(t1) x(t1), (2)

for any two t1, t2, and where the scale factor a(t) is a
function of time such that ȧ/a = H.
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scales which do not participate to the expansion dynamics,
and those which do, is highly nontrivial in practice. In the
next section I will consider an idealized situation—a discrete
cosmological model—in which this distinction is clear, and
whose consequences can be quantified. Note that similar issues
have been addressed in Ref. [58] following a very di�erent
approach, based on renormalization techniques.

III. DISCRETE NEWTONIAN COSMOLOGY

Let us compare the energetic properties of a discrete and
a continuous gravitational system. We will see that the dis-
creteness of the matter distribution leads to a rescaling of both
kinetic and gravitational energy, e�ectively producing a small
change of the spatial curvature term in the expansion dynamics.

A. Description of the models

Consider a finite system of N = n
3 identical masses m, each

one being located at the center of a cell of a cubic lattice of size
L, as illustrated in Fig. 1. We call M = Nm the total mass and
` = L/n the distance between two neighboring masses, that is
the size of an elementary cell C. This system will be refered
to as the discrete cosmological model (D) in the following.
We also consider the corresponding continuous model (C),
where the same cells are homogeneously filled with a density
⇢ = m/`3.

The finiteness of those models allows us to easily formulate
energetic rationales. They are expected then to behave more
similarly to the finite lattice universes studied in Refs. [23–34]
than to the infinite periodic models of Refs. [35–42]. It is thus
the opportunity to determine if the backreaction e�ect observed
in finite lattices [29, 31, 34] is genuinely relativistic, or if it can
be captured by Newtonian physics.

discrete model (D) continuous model (C)

m
C C

`

⇢ =
m

`3
=

M

L3

L = n`

Figure 1. Two models are compared: a discrete model (D) made of n
3

point masses in a cubic lattice, and the corresponding continuous
model (C) with constant density.

B. E�ect of discretization on the gravitational potential energy

We start by comparing the gravitational energies of the
discrete and continuous models, E

(D)
grav and E

(C)
grav. For that

purpose, it is convenient to regard model (C) as a set of N

homogeneous cubes distributed on the same lattice as model (D).
We can then split the integral of E

(C)
grav into two contributions: on

the one hand, interactions between elements of volume which
belong to the same cell C, and, on the other hand, interactions
between elements belonging to di�erent cells C, C’:

E
(C)
grav =

NEgrav,selfz                                    }|                                    {
�

X

C

Z

x,x0 2C
d3x d3x 0

G⇢2

|x � x 0 |

�

X

C,C0

Z

x2C,x0 2C0
d3x d3x 0

G⇢2

|x � x 0 |
|                                          {z                                          }

Egrav,int

. (9)

The first term represents the sum of the gravitational self-energy
of each cells, while the second term is the interaction energy
between di�erent cells.

Because Egrav,self and E
(C)
grav represent the gravitational energy

of the same system modulo rescaling, we can expect them to
be simply related. This can be proved without any calculation
but invoking the Buckingham ⇧-theorem [59]. For the system
considered here—a homogeneous cube with size ` and mass
m—the dimensionless quantity Egrav,self/(Gm

2/`) can only be
a function of the other independent dimensionless quantities
that one can construct from the parameters of the system and
the relevant physical constants. It turns out that there are no
such other quantities, which implies that Egrav,self / Gm

2/`,
whence

E
(C)
grav

Egrav,self
=

M
2`

m2L
= N

5/3. (10)

Regarding the interaction energy, I will make the approxi-
mation that the interaction energy between two di�erent cells
C, C0 is equal to the interaction energy of two point masses
separated by the same distance, so that

Egrav,int ⇡ E
(D)
grav ⌘

1
2

X

i, j 2lattice

�Gm
2

���xi � x j
���
. (11)

This is motivated by the so-called shell theorem for spherically
symmetric distributions, which can be regarded as a conse-
quence of Gauss’s law. Although strict equality is only achieved
for spherically symmetric distributions, this approximation is
shown to be accurate at 5% level — see Appendix A for details.

From Eqs. (10) and (11), we then conclude that

E
(D)
grav ⇡

⇣
1 � N

�2/3
⌘

E
(C)
grav. (12)

In other terms, the gravitational interaction resisting to cosmic
expansion is slightly weaker in the discrete model than in the
continuous model. This must be understood as follows. In
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the price that must be paid by kinetic energy to gravity
which opposes a resistance to it. Such a reasoning equally
applies to any self-gravitating system. However, one then
has to be careful about the physical meaning of the Ekin
and Egrav. Indeed, because we are interested in the expan-
sion dynamics only, they must represent respectively the
kinetic energy of expansion and the gravitational energy
that really resists to this expansion.

This last point is particularly important in the presence
of gravitationally collapsed structures, e.g. galaxies. In
such systems, the internal thermal or rotational motion
does not contribute to the kinetic energy of expansion,
and the gravitational interaction between stars within the
galaxy does not resist to the expansion. In other words,
the internal degrees of freedom of gravitationally collapsed
structures are decoupled from the expansion dynamics.
Possible consequences of this decoupling have been ex-
plored with an elaborated renormalization approach in
Ref. [57]. In the next section I will address a similar issue
in the light of a discrete cosmological model.

III. DISCRETE NEWTONIAN COSMOLOGY

Let us compare the energetic properties of a discrete
and a continuous gravitational system. We will see that
the discreteness of the matter distribution leads to a
rescaling of both kinetic and gravitational energy, e�ec-
tively producing a small change of the spatial curvature
term in the expansion dynamics.
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distributed on a cubic lattice of size L, as illustrated in
Fig. 1. We call M = Nm the total mass and a = L/n the
distance between two neighboring masses, that is is the
size of an elementary cell C. This system will be refered
to as the discrete cosmological model (D) in the following.
We also consider the corresponding continuous model (C),
homogeneously filled with a density fl = m/a
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Newtonian physics.

B. E�ect of discretization on the gravitational
potential energy

We start by comparing the gravitational energies of
the discrete and continuous models, E

(D)
grav and E

(C)
grav. For

that purpose, it is convenient to regard model (C) as a set

discrete model (D) continuous model (C)

m
C C

a

fl = m
a3 = M

L3

L = na

Figure 1. Two models are compared: a discrete model (D)
made of point masses on a cubic lattice, and the corresponding
continuous model (C) with constant density.
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This last point is particularly important in the presence
of gravitationally collapsed structures, e.g. galaxies. In
such systems, the internal thermal or rotational motion
does not contribute to the kinetic energy of expansion,
and the gravitational interaction between stars within the
galaxy does not resist to the expansion. In other words,
the internal degrees of freedom of gravitationally collapsed
structures are decoupled from the expansion dynamics.
Possible consequences of this decoupling have been ex-
plored with an elaborated renormalization approach in
Ref. [57]. In the next section I will address a similar issue
in the light of a discrete cosmological model.
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This last point is particularly important in the presence
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and the gravitational interaction between stars within the
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Possible consequences of this decoupling have been ex-
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as model (D). We can then split the integral of E

(C)
grav into

two contributions: on the one hand interactions between
elements of volume which belong to the same cell C; on
the other hand interactions between elements belonging
to di�erent cells C, C’

E
(C)
grav =

NEgrav,self˙ ˝¸ ˚

≠

ÿ

C

⁄

x,xÕœC
d3x d3xÕ Gfl

2

|x ≠ xÕ|

≠

ÿ

C ”=CÕ

⁄

xœC,xÕœCÕ
d3x d3xÕ Gfl

2

|x ≠ xÕ|
¸ ˚˙ ˝

Egrav,int

. (9)

The first term represents the sum of the gravitational
self-energy of each cells, while the second term is the
interaction energy between di�erent cells.

Because Egrav,self and E
(C)
grav represent the gravitational

energy of the same system modulo rescaling, we can ex-
pect them to be simply related. This can be proved
without any calculation but invoking the Buckingham
�-theorem [58]. For the system considered here—a homo-
geneous cube with size a and mass m—the dimensionless
quantity Egrav,self/(Gm

2
/a) can only be a function of the

other independent dimensionless quantities that one can
construct from the parameters of the system and the rele-
vant physical constants. It turns out that there are no such
other quantities, which implies that Egrav,self Ã Gm

2
/a.

Whence

E
(C)
grav

Egrav,self
= M

2
a

m2L
= N

5/3
. (10)

Regarding the interaction energy, I will make the ap-
proximation that the interaction energy between two dif-
ferent cells C, C

Õ is equal to the interaction energy of two
point masses separated by the same distance, so that

Egrav,int ¥ E
(D)
grav. (11)

4

This is motivated by the so-called shell theorem for spher-
ically symmetric distributions, which can be regarded as
a consequence of Gauss’s law. Although strict equality is
achieved for spherically symmetric distributions only, this
approximation can be analytically justified by a multipole
expansion of the field created by a cubical distribution,
and we will see that it is very accurate in practice.

From Eqs. (10), (11), we then conclude that

E
(D)
grav ¥

1
1 ≠ N

≠2/3
2

E
(C)
grav. (12)

In other terms, the gravitational interaction resisting to
cosmic expansion is slightly weaker in the discrete model
than in the continuous model. This must be understood
as follows. In the continuous model every interaction
between each element of fluid is involved in this resis-
tance, including interactions between elements that, in
the discrete model, would belong to the same body. In
the discrete model, there are e�ectively less gravitational
interactions, because internal gravity does not participate.
As far as gravitational energy is concerned, the discrete-
ness of the model is equivalent to a renormalization of
the gravitational constant as

Ge�
G

¥ 1 ≠ N
≠2/3

. (13)

Of course this correction could equivalently be encoded
into an e�ective density fle� or an e�ective total mass Me�.

This result has been tested numerically against exact
calculations, as illustrated in Fig. 2. We see that the
behavior in N

≠2/3 is very accurately reproduced, even
for small values of N , which confirms the e�ciency of
the approximation made in Eq. (11). This power-law
correction strongly reminds us the result obtained by
Bentivegna and KorzyÒski [30, 33], except that the e�ect
seems to go the other way round—their discrete model is
e�ectively heavier than the continuous model. I’ll show
in Subsec. III D why our results actually agree.

C. E�ect of discretization on the kinetic energy

Let us now turn to the kinetic energy. Because the
system (even in the continuous case) is not infinite and
because its geometry is not spherically symmetric, Hub-
ble’s law (1) should not apply at all times. However,
because we are only interested in the e�ect of discretiza-
tion and not about finite-size or symmetry e�ects, we will
assume for simplicity that it does. For model (C), the
kinetic energy is easily calculated as

E
(C)
kin =

⁄
d3x

flv
2

2 (14)

=
⁄ L/2

≠L/2
dx dy dz

1
2 flH

2(x2 + y
2 + z

2) (15)

= 1
8 MH

2
L

2
. (16)

Figure 2. Ratio between the gravitational potential energy of
the discrete model, E(D)

grav and of the continuous model, E(C)
grav,

as a function of the number N of particles in the discrete
model. Here the total size L of the lattice is fixed, so that a =
L/N1/3 decreases with N . Squares indicate exact calculations,
which follow very accurately the behavior obtained in Eq. (12),
indicated by a line.

In the discrete case (D), we will assume for convenience
that n is an odd integer, so that one of the masses is
the center of the lattice, with respect to which the other
masses are located at positions p = (px, py, pz), where
each component runs from ≠(n ≠ 1)/2 to (n ≠ 1)/2. The
kinetic energy of the system is then

E
(D)
kin =

ÿ

pœlattice

mv
2
p

2 (17)

=
(n≠1)/2ÿ

px,py,pz=≠(n≠1)/2

1
2mH

2
a

2(p2
x + p

2
y + p

2
z) (18)

= 3mH
2
a

2 ( n≠1
2 )( n+1

2 )n
6 (19)

= 1
8 MH

2
L

2
1

1 ≠ N
≠2/3

2
, (20)

from which we conclude that

E
(D)
kin =

1
1 ≠ N

≠2/3
2

E
(C)
kin . (21)

The discrete model has therefore a slightly lower kinetic
energy of expansion compared to the corresponding con-
tinuous model. This can be interpreted as follows. In the
continuous model, not only the cells are going away from
each other, but they also expand themselves. This second
component is absent in the discrete case.

D. Discussion

Gathering the results of Subsecs. III B, III C we con-
clude that, in the discrete model, the relevant energy
involved in the expansion dynamics is simply rescaled by

Gauss’s law

Egrav,self / Gm2/`
E(C)

grav

Egrav,self
=

M2`

m2L
= N5/3
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the continuous model, every interaction between each element
of fluid is involved in this resistance, including interactions
between elements that, in the discrete model, would belong
to the same body. In the discrete model, there are e�ectively
less gravitational interactions, because internal gravity does
not participate. As far as gravitational energy is concerned, the
discreteness of the model is equivalent to a renormalization of
the gravitational constant as

Ge�
G
⇡ 1 � N

�2/3. (13)

Of course this correction could equivalently be encoded into
an e�ective density ⇢e� or an e�ective total mass Me�.

This result has been tested against numerical calculations,
as illustrated in Fig. 2. We see that the behavior in N

�2/3

is accurately reproduced, even for small values of N , which
confirms the e�ciency of the approximation made in Eq. (11).
This power-law correction strongly reminds us the result ob-
tained by Bentivegna and KorzyÒski [31, 34], except that the
e�ect seems to go the other way round—their discrete model
is e�ectively heavier than the continuous model. I’ll show in
subsection III D why our results actually agree.
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Figure 2. Ratio between the gravitational potential energy of the
discrete model, E

(D)
grav and of the continuous model, E

(C)
grav, as a function

of the number N of particles in the discrete model. Here the total
size L of the lattice is fixed, so that ` = L/N1/3 decreases with
N . Squares indicate numerical calculations, obtained by computing
directly the finite sum of Eq. (11). They accurately follow the behavior
obtained in Eq. (12), indicated by the dashed line.

C. E�ect of discretization on the kinetic energy

Let us now turn to the kinetic energy. Because the system
(even in the continuous case) is not infinite and because its
geometry is not spherically symmetric, Hubble’s law (1) should
not apply at all times. However, because we are only interested
in the e�ect of discretization and not about finite-size or sym-
metry e�ects, we will assume for simplicity that it does. For

model (C), the kinetic energy is easily calculated as

E
(C)
kin =

Z
d3x

⇢v2

2
(14)

=

Z L/2

�L/2
dx dy dz

1
2
⇢H2(x

2 + y2 + z
2) (15)

=
1
8

MH
2
L

2. (16)

In the discrete case (D), we will assume for convenience that n

is an odd integer, so that one of the masses is the center of the
lattice, with respect to which the other masses are located at
positions p = (px, py, pz ), where each component runs from
�(n � 1)/2 to (n � 1)/2. The kinetic energy of the system is
then

E
(D)
kin =

X

p2lattice

mv2
p

2
(17)

=

(n�1)/2X

px,py,pz=�(n�1)/2

1
2

mH
2`2(p

2
x + p

2
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2
z ) (18)
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2 n( n�1
2 )( n+1

2 )
6

(19)

=
1
8

MH
2
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2
⇣
1 � N

�2/3
⌘
, (20)

from which we conclude that

E
(D)
kin =

⇣
1 � N

�2/3
⌘

E
(C)
kin . (21)

The discrete model, therefore, has a slightly lower kinetic
energy of expansion compared to the corresponding continuous
model. This can be interpreted as follows. In the continuous
model, not only are the cells going away from each other, but
they also expand themselves. This second component is absent
in the discrete case.

D. Discussion

Gathering the results of Subsecs. III B, III C we conclude
that, in the discrete model, the relevant energy involved in the
expansion dynamics is simply rescaled by a factor 1 � N

�2/3

with respect to the continuous case,

E
(D)
kin + E

(D)
grav ⇡

⇣
1 � N

�2/3
⌘ ⇣

E
(C)
kin + E

(C)
grav
⌘
. (22)

If this total energy is zero—i.e. in relativistic terms if spatial
curvature vanishes—then the dynamics of the discrete model
is identical to the one of the homogeneous model. If on the
contrary the total energy is not exactly zero—if the Universe
has a spatial curvature—then the dynamics of model (D) di�ers
from the one of (C) in that its spatial curvature is e�ectively
weaker:

K
(D)
⇡

⇣
1 � N

�2/3
⌘

K
(C). (23)

Physically speaking the scenario is the following. At early
times the Universe is very homogeneous, so that N ! 1 and
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This is motivated by the so-called shell theorem for spher-
ically symmetric distributions, which can be regarded as
a consequence of Gauss’s law. Although strict equality is
achieved for spherically symmetric distributions only, this
approximation can be analytically justified by a multipole
expansion of the field created by a cubical distribution,
and we will see that it is very accurate in practice.

From Eqs. (10), (11), we then conclude that

E
(D)
grav ¥

1
1 ≠ N

≠2/3
2

E
(C)
grav. (12)

In other terms, the gravitational interaction resisting to
cosmic expansion is slightly weaker in the discrete model
than in the continuous model. This must be understood
as follows. In the continuous model every interaction
between each element of fluid is involved in this resis-
tance, including interactions between elements that, in
the discrete model, would belong to the same body. In
the discrete model, there are e�ectively less gravitational
interactions, because internal gravity does not participate.
As far as gravitational energy is concerned, the discrete-
ness of the model is equivalent to a renormalization of
the gravitational constant as

Ge�
G

¥ 1 ≠ N
≠2/3

. (13)

Of course this correction could equivalently be encoded
into an e�ective density fle� or an e�ective total mass Me�.

This result has been tested numerically against exact
calculations, as illustrated in Fig. 2. We see that the
behavior in N

≠2/3 is very accurately reproduced, even
for small values of N , which confirms the e�ciency of
the approximation made in Eq. (11). This power-law
correction strongly reminds us the result obtained by
Bentivegna and KorzyÒski [30, 33], except that the e�ect
seems to go the other way round—their discrete model is
e�ectively heavier than the continuous model. I’ll show
in Subsec. III D why our results actually agree.

C. E�ect of discretization on the kinetic energy

Let us now turn to the kinetic energy. Because the
system (even in the continuous case) is not infinite and
because its geometry is not spherically symmetric, Hub-
ble’s law (1) should not apply at all times. However,
because we are only interested in the e�ect of discretiza-
tion and not about finite-size or symmetry e�ects, we will
assume for simplicity that it does. For model (C), the
kinetic energy is easily calculated as

E
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Figure 2. Ratio between the gravitational potential energy of
the discrete model, E(D)

grav and of the continuous model, E(C)
grav,

as a function of the number N of particles in the discrete
model. Here the total size L of the lattice is fixed, so that a =
L/N1/3 decreases with N . Squares indicate exact calculations,
which follow very accurately the behavior obtained in Eq. (12),
indicated by a line.

In the discrete case (D), we will assume for convenience
that n is an odd integer, so that one of the masses is
the center of the lattice, with respect to which the other
masses are located at positions p = (px, py, pz), where
each component runs from ≠(n ≠ 1)/2 to (n ≠ 1)/2. The
kinetic energy of the system is then

E
(D)
kin =

ÿ

pœlattice

mv
2
p

2 (17)

=
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px,py,pz=≠(n≠1)/2
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from which we conclude that

E
(D)
kin =

1
1 ≠ N

≠2/3
2

E
(C)
kin . (21)

The discrete model has therefore a slightly lower kinetic
energy of expansion compared to the corresponding con-
tinuous model. This can be interpreted as follows. In the
continuous model, not only the cells are going away from
each other, but they also expand themselves. This second
component is absent in the discrete case.

D. Discussion

Gathering the results of Subsecs. III B, III C we con-
clude that, in the discrete model, the relevant energy
involved in the expansion dynamics is simply rescaled by
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a factor 1 ≠ N
≠2/3 with respect to the continuous case,

E
(D)
kin + E

(D)
grav =

1
1 ≠ N

≠2/3
2 1

E
(C)
kin + E

(C)
grav

2
. (22)

If this total energy is zero—i.e. in relativistic terms if
spatial curvature vanishes—then the dynamics of the
discrete model is identical to the one of the homogeneous
model. If on the contrary the total energy is not exactly
zero—if the Universe has a spatial curvature—then the
dynamics of model (D) di�ers from the one of (C) in that
its spatial curvature is e�ectively weaker:

K
(D) =

1
1 ≠ N

≠2/3
2

K
(C)

. (23)

Physically speaking the scenario is the following. At
early times the Universe is very homogeneous, so that
N æ Œ and both curvatures match. As gravitationally
bound structures form, N decreases and a fraction N

≠2/3

of both kinetic and gravitational energies leaks from the
expansion dynamics to microscopic degrees of freedom,
such as the rotational or thermal motions in galaxies and
clusters of galaxies, and their gravitational binding energy.
The net result of this process is to progressively weaken
the corresponding cosmological spatial curvature.

How can this be reconciled with the results of Refs. [30,
33]? Their authors showed that, for a finite lattice of
black holes, at the moment of maximum expansion, the
expansion dynamics follows the Friedmann equation of
a continuum with the e�ective total mass Me� ¥ M(1 +
N

≠2/3). From a Newtonian point of view, at maximum
expansion kinetic energy vanishes and total energy is
then equal to the e�ective gravitational energy. We can
therefore write

E ¥
–GMe�
Lmax

= (1 ≠ N
≠2/3) ◊

–GM

Lmax

≈∆ (1 ≠ N
≠2/3) ◊ E ¥

–GM

Lmax
, (24)

where – is a geometrical factor. In other words, while
Bentivegna and KorzyÒski work with a fixed spatial curva-
ture (total energy) and interpret the backreaction e�ect as
a enhancement of the mass, I work with a fixed mass and
I encode backreaction in a weakened spatial curvature.
Both approaches are equivalent at maximum expansion.
A similar rationale shows that this behavior in N

≠2/3

also matches the results of Ref. [28]. The remarkable
agreement between the results of Refs. [28, 30, 33] and
the calculations of this section shows that, although the
latter rely on a fully relativistic treatment of discrete
cosmology, the backreaction e�ect that they observe is,
in fact, Newtonian.

For reasonable orders of magnitudes of N , the associ-
ated correction turns out to be very small. For instance,
if we suppose that the particles of the discrete model
represent clusters of galaxies with mass m ≥ 1015

M§,
then there are approximately N ≥ 108 such objects in
the observable Universe, so that the associated correction

of curvature would be on the order of 10≠6. Note finally
that such a correction obviously vanishes in an infinite
universe (N æ Œ).

The analysis presented in the present section justifies
the use of the continuous approximation in Newtonian
cosmology. It also emphasizes that its validity is not
as trivial as one could expect. A key element in this
demonstration is Eq. (11), i.e. the fact that any isolated
distribution of mass gravitates similarly to the same mass
concentrated at its center, which I loosely refer to as
Gauss’s law. This feature is however very specific to fields
whose Green function goes like 1/r

2, hence it generically
does not hold for modified theories of gravitation, as will
be illustrated in the next section.

IV. DISCRETE COSMOLOGY WITH A
MODIFIED THEORY OF GRAVITY

Several theories of gravitation have been proposed in
order to address the astrophysical and cosmological prob-
lems of dark matter and dark energy [24]. Most of those
theories are generically expected to violate Gauss’s the-
orem, so that the conclusions obtained in the previous
section cannot apply. Hints towards this statement are,
e.g., Ref. [59] where it is shown that the Dvali-Gabadadze-
Porrati gravity [60] violates Birkho�’s theorem; or the
impossibility of designing Einstein-Straus models with
f(R) theories [61].

In this section, the comparison between a discrete and
a continuous model is performed again, but using Yukawa
gravity instead of Newtonian gravity. Albeit simplistic
compared to the current very elaborated theories of mas-
sive gravity [46], the Yukawa behavior is known to generi-
cally emerge in the weak-field regime of f(R) theories [24].
Most importantly, this model has the advantage of being
easily compared with the Newtonian case, which allows
me to keep track of the actual reasons why a backreaction
e�ect could emerge.

A. Yukawa gravity

The Yukawa theory is obtained by simply adding a
mass term to the Poisson equation for the gravitational
field �. The resulting field equation takes the form

�� ≠ ⁄
≠2� = 4fiGfl, (25)

where fl is the local mass density, and ⁄ © h/(m�c) is
the Compton wavelength associated with the mass m� of
the Yukawa field, h being the Planck constant and c the
speed of light.

It is well know that the graviton-mass term in the
above equation implies that the field generated by a point
mass m decays exponentially as one goes away from the
source:

�•(r) = ≠
Gm

r
e≠ r

⁄ , (26)

=
⇣
1�N�2/3

⌘
E(C)

E(D) = E(D)
kin + E(D)

grav

K(D) = (1�N�2/3)K(C)

Discrete model: same dynamics as the continuous model, 
but with a renormalized spatial curvature
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Figure 11. σM for both types of configurations and the least-squares fit. The slope of the
straight line corresponds to N−0.65.
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Figure 5. Three-dimensional slices though the H8, H64 and H216 configurations. The
distance of every point on the surface the origin is proportional to ! at the corresponding
point in S3. Note that as the number of punctures grows, the spikes, representing the
singularities in ! become more and more narrow. At the same time the space between
the punctures becomes increasingly round.

of Schwarzschild radii from the nearest black hole and its metric is strongly perturbed by its
presence. This distortion persists for arbitrary large N. In fact, asymptotically the spatial metric
tensor takes the form of a single Schwarzschild black hole relatively isolated from the rest of
the black holes: recall that the distance from the nearest other BH is bounded from below by
δmin = O(N−1/3). It is only in the region between the black holes that the spatial metric tends
to the homogeneous one. On the other hand, the volume of this faraway region grows with N
and asymptotically it takes up almost all of the original S3.

These results may seem quite puzzling at first. One might naively expect that as we add
more and more black holes into a compact manifold like S3 the Universe will become more
and more crowded as the black holes will occupy a larger and larger fraction of the 3-sphere,
resulting in increasing distortion of the space between the black holes as well as of the black
holes themselves, both due to the presence of near companions. In fact, we have just proven
that it is quite the opposite: for large N the Universe becomes effectively more and more
empty, because an increasing part of the 3-sphere is taken up by the region far away from the
black holes which asymptotically lies at their infinity. An observer in this region no longer
feels the gravitational field of any single black hole, but rather the collective influence of all
of them. The metric in this area is very close to the closed FLRW metric despite the fact that
no ordinary matter is present.

All these properties can be observed easily in figure 5, where we have plotted the shape
of the conformal factor in three first configurations from the infinite sequence (see also figure
1 in [21] for a similar plot for the six regular configurations).

Consider now the relative mass deficit σM . Theorem 3.2, in conjunction with the results
from the previous subsection, yields an estimate of the form of σM ! O(N−1/3). Thus for
very large N we may simply neglect all the backreaction effects and plug into the Friedmann
equation the energy density calculated in the most naive way, by adding up the ADM masses
of all black holes and dividing the result by the effective volume of the Universe. This way
we have proved that in HN the backreaction effect of mass non-additivity vanishes in the
continuum limit. Both of these results agree with what has been observed for the regular
configurations in [21].

Remark. As we mentioned in section 2, in [20– 22] the fitting and comparison with a
homogeneous FLRW model was done differently, by matching the length of the edge of
a single big cell with the length of the edge from a corresponding lattice on a round 3-sphere.
As we have shown, the value of the 3-metric on the edge converges to ⟨!⟩4 q0 relatively quickly
because it lies as far as possible from the black holes. It follows easily that the values of aeff
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• Positively curved Universe: the formation of bound 
structures effectively weakens spatial curvature 

• Infinite Universe: no effect 

• Explains the discrepancies between previous 
results in the literature (finite vs infinite lattices)



Newtonian conclusions
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Key ingredient: Gauss’s law

• Positively curved Universe: the formation of bound 
structures effectively weakens spatial curvature 

• Infinite Universe: no effect 

• Explains the discrepancies between previous 
results in the literature (finite vs infinite lattices)



What about alternative 
theories of gravity?
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Example: scalar tensor
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S = SEH[gµ⌫ ] + S�[�] + Sm[ , C
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general relativity
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fifth force?

If the scalar field has no potential, the expansion dynamics 
is unchanged [Sanghai & Clifton 2017]
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(in modified gravity)
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• modification of gravity with a potential  
(Yukawa-like fifth force) 

• screening mechanisms 

• compact dark matter (PBH, …)



Conclusion
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• In Newtonian gravity / GR, discreteness causes  
backreaction in positively curved universes 

• The correction is realistically small, and vanishes  
in an infinite Universe 

• Gauss’s law is central in this mechanism 

• In alternative theories of gravity, the amplitude of  
the corrections must be evaluated
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Yukawa gravity
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6

The exponential factor is sometimes called screening
term, by analogy with the behavior of the electrostatic
field around individual charges in a plasma or an elec-
trolyte, which are screened by the alternation of successive
opposite-charge layers [62].

Integrating Eq. (25) over a spatial domain D directly
shows that the mass term leads to a violation of Gauss’s
theorem,

⁄

ˆD
g · n dS = ≠4fiGMD ≠ ⁄

≠2
⁄

D
� dV (27)

with g © ≠Ò�, and where n is the outwards unit vector
normal to the boundary ˆD of D. This violation is easily
observed if we consider the potential �# created by a
sphere of radius R homogeneously filled with density fl,
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4
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with

�(x) ©
3
x3 (x cosh x ≠ sinh x) . (29)

Given the behaviour of � at small x,

�(x π 1) = 1 + x
2

10 + O(x4), (30)

one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
interaction energy E

#≠#
grav,int, defined by as the potential

energy of one of them, say 1�, in the field � 2� created by
the second one,

E
#≠#
grav,int =

⁄

1�
d3x fl� 2�(x). (31)

If we the balls are disjoint (d Ø 2R), then � 2� is given
by the second line of Eq. (28). The integral over the
second ball can then be performed analytically and yields

E
#≠#
grav,int = ≠

Gm
2

d
�2

3
R

⁄

4
e≠ d

⁄ . (32)

d

R
fl fl

Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
#≠#
grav,int

E
•≠•
grav,int

= �2
3

R

⁄

4
. (33)

It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as

E
#
grav,self ©

⁄

#
d3x fl�#(x), (34)

where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
the problem, ⁄, the �-theorem does not directly give the
scaling law for Egrav,self. We can nevertheless perform the
integration analytically and get

E
#
grav,self = ≠

3
5

Gm
2

R
�

3
R

⁄

4
. (35)

The function �, whose expression is

�(x) ©
5

2x2
#
1 ≠ (1 + x)e≠x�(x)

$
(36)

= 15
4x5

5
1 ≠ x

2 + 2x
3

3 ≠ (1 + x)2e≠2x

6
, (37)

quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
and continuous (C) models presented in Subsec. III A, in

I violate Gauss

�� = 4⇡G⇢a� ��2�
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The exponential factor is sometimes called screening
term, by analogy with the behavior of the electrostatic
field around individual charges in a plasma or an elec-
trolyte, which are screened by the alternation of successive
opposite-charge layers [62].

Integrating Eq. (25) over a spatial domain D directly
shows that the mass term leads to a violation of Gauss’s
theorem,
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ˆD
g · n dS = ≠4fiGMD ≠ ⁄
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� dV (27)

with g © ≠Ò�, and where n is the outwards unit vector
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one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
interaction energy E
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grav,int, defined by as the potential

energy of one of them, say 1�, in the field � 2� created by
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If we the balls are disjoint (d Ø 2R), then � 2� is given
by the second line of Eq. (28). The integral over the
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
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grav,int

E
•≠•
grav,int
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3
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4
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It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as

E
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⁄
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where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
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scaling law for Egrav,self. We can nevertheless perform the
integration analytically and get

E
#
grav,self = ≠

3
5

Gm
2

R
�

3
R

⁄

4
. (35)

The function �, whose expression is

�(x) ©
5

2x2
#
1 ≠ (1 + x)e≠x�(x)

$
(36)

= 15
4x5

5
1 ≠ x

2 + 2x
3

3 ≠ (1 + x)2e≠2x

6
, (37)

quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
and continuous (C) models presented in Subsec. III A, in
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term, by analogy with the behavior of the electrostatic
field around individual charges in a plasma or an elec-
trolyte, which are screened by the alternation of successive
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Integrating Eq. (25) over a spatial domain D directly
shows that the mass term leads to a violation of Gauss’s
theorem,
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with g © ≠Ò�, and where n is the outwards unit vector
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one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
interaction energy E

#≠#
grav,int, defined by as the potential

energy of one of them, say 1�, in the field � 2� created by
the second one,

E
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grav,int =
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If we the balls are disjoint (d Ø 2R), then � 2� is given
by the second line of Eq. (28). The integral over the
second ball can then be performed analytically and yields
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
#≠#
grav,int

E
•≠•
grav,int

= �2
3

R

⁄

4
. (33)

It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as

E
#
grav,self ©

⁄

#
d3x fl�#(x), (34)

where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
the problem, ⁄, the �-theorem does not directly give the
scaling law for Egrav,self. We can nevertheless perform the
integration analytically and get

E
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quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
and continuous (C) models presented in Subsec. III A, in

m m
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The exponential factor is sometimes called screening
term, by analogy with the behavior of the electrostatic
field around individual charges in a plasma or an elec-
trolyte, which are screened by the alternation of successive
opposite-charge layers [62].

Integrating Eq. (25) over a spatial domain D directly
shows that the mass term leads to a violation of Gauss’s
theorem,

⁄

ˆD
g · n dS = ≠4fiGMD ≠ ⁄

≠2
⁄

D
� dV (27)

with g © ≠Ò�, and where n is the outwards unit vector
normal to the boundary ˆD of D. This violation is easily
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sphere of radius R homogeneously filled with density fl,
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Given the behaviour of � at small x,

�(x π 1) = 1 + x
2

10 + O(x4), (30)

one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
interaction energy E
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grav,int, defined by as the potential

energy of one of them, say 1�, in the field � 2� created by
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
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grav,int
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It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as

E
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grav,self ©

⁄
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d3x fl�#(x), (34)

where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
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scaling law for Egrav,self. We can nevertheless perform the
integration analytically and get
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quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
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6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
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theorem,
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one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
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grav,int

E
•≠•
grav,int
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4
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It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as

E
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grav,self ©

⁄

#
d3x fl�#(x), (34)

where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
the problem, ⁄, the �-theorem does not directly give the
scaling law for Egrav,self. We can nevertheless perform the
integration analytically and get
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quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)
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sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is
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It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as
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where we have to use the first line of Eq. (28). Unlike
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integration analytically and get
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quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
and continuous (C) models presented in Subsec. III A, in
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The exponential factor is sometimes called screening
term, by analogy with the behavior of the electrostatic
field around individual charges in a plasma or an elec-
trolyte, which are screened by the alternation of successive
opposite-charge layers [62].

Integrating Eq. (25) over a spatial domain D directly
shows that the mass term leads to a violation of Gauss’s
theorem,
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with g © ≠Ò�, and where n is the outwards unit vector
normal to the boundary ˆD of D. This violation is easily
observed if we consider the potential �# created by a
sphere of radius R homogeneously filled with density fl,
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Given the behaviour of � at small x,

�(x π 1) = 1 + x
2

10 + O(x4), (30)

one can check that the Newtonian expression is recovered
for ⁄ æ Œ; in other words there is no vDVZ disconti-
nuity [63, 64] in Yukawa gravity. In the second line of
Eq. (28), we see that contrary to Newtonian gravity the
gravitational field created outside a homogeneous massive
sphere is not equivalent to the same mass m concentrated
at its center, but rather to the same mass corrected by a
factor �(R/⁄).

B. Gravitational interaction of two balls

Consider two homogeneous balls with density fl, radius
R, and whose centers are separated by a distance d, as
depicted in Fig. 3. Let us calculate their gravitational
interaction energy E

#≠#
grav,int, defined by as the potential

energy of one of them, say 1�, in the field � 2� created by
the second one,
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If we the balls are disjoint (d Ø 2R), then � 2� is given
by the second line of Eq. (28). The integral over the
second ball can then be performed analytically and yields
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Figure 3. Two homogeneous balls in gravitational interaction.

In other words, the ratio between the interaction energy of
two balls and the interaction energy of two point masses
of the same mass and separated by the same distance is

E
#≠#
grav,int

E
•≠•
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= �2
3

R

⁄

4
. (33)

It is remarkable that this ratio does not depend on the
distance d.

C. Gravitational self-energy of a ball

In order to repeat a rationale calculation as in the
Newtonian case, we need to compute the gravitational
self-energy of a homogeneous distribution of mass. In the
case of a ball with density fl, this quantity is defined as
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where we have to use the first line of Eq. (28). Unlike
the Newtonian case, since there is a new length scale in
the problem, ⁄, the �-theorem does not directly give the
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quantifies the di�erence between the Yukawa and Newto-
nian cases. One can check that the latter is recovered in
the limit ⁄ æ Œ, because

�(x π 1) = 1 ≠
5x

6 + O(x2). (38)

D. Gravitational energy of the discrete universe

We now turn to the comparison between the discrete (D)
and continuous (C) models presented in Subsec. III A, in

with



Backreaction effect
Contrary to the Newtonian case:  

• forming bound structures does not have the same 
effect on kinetic and gravitational energies;  

• a correction persists even in an infinite universe;  

• it is equivalent to renormalizing Newton’s constant:

7

the context of Yukawa gravity. We proceed as in the New-
tonian case, and start by splitting the total gravitational
energy of model (C) into the self-energy of individual
cells C and the interaction energy of di�erent cells,

E
(C)
grav = NE

C
grav,self +

ÿ

C ”=CÕ

E
C≠CÕ

grav,int. (39)

We then make the following approximations: although
the cells have a cubic geometry, we calculate their self-
energy as if they were balls with the same mass m and
volume a

3, i.e. with radius

R =
3

3
4fi

4 1
3

a, (40)

in other words,

E
C
grav,self ¥ E

#
grav,self(m, R). (41)

In a similar way, we calculate the gravitational energy of
the full lattice, i.e. E

(C)
grav, as if it were a ball with total

mass M = Nm and volume L
3, so that

E
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grav ¥ E

#
grav,self(Nm, N

1/3
R) (42)

¥ N
5/3�(N1/3

R/⁄)Egrav,self, (43)

which replaces the scaling law (10) obtained in the Newto-
nian case. Finally, we evaluate the interaction of di�erent
cells as if there were disjoint balls, which allows us to use
the result of Subsec. IV B,
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3
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4
E

(D)
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We conclude from Eqs. (39), (43), and (46) that the ratio
between the gravitational energies of the two models reads

E
(D)
grav

E
(C)
grav

¥
1

�2(R/⁄)

5
1 ≠

1
N2/3

�(R/⁄)
�(N1/3R/⁄)

6
. (47)

Although the assumptions formulated above can seem
crude, they actually provide an excellent approximation
of the final result, as illustrated in Fig. 4. Just like in the
Newtonian case, Eq. (47) can be seen as the ratio between
the e�ective gravitational constant in the discrete model
and the true gravitational constant.

E. Discussion

There are two significant distinctions between the
Yukawa case analyzed here and the Newtonian case pre-
sented in the previous section.

Figure 4. Ratio between the gravitational potential energy of
the discrete model, E(D)

grav and of the continuous model, E(C)
grav,

as a function of the number N of particles in the discrete
model. Three Yukawa theories are considered, with di�erent
masses for the field �, corresponding to Compton lengths
⁄ = L, L/2, L/10. The total size L of the lattice is fixed, so
that a, R Ã N≠1/3. Squares indicate exact calculations, which
follow very accurately the behavior predicted by Eq. (47), in-
dicated by solid lines. The Newtonian case N≠2/3 is indicated
by a dashed line for comparison.

First, the respective changes in gravitational energy and
kinetic energy due to discretization are no longer identical.
Hence, while the net consequence of the formation of
gravitationally bound structures on cosmic expansion was
found to be, in the Newtonian case, a rescaling of spatial
curvature, this is no longer true in Yukawa gravity. A
consequence is that backreaction now occurs also in a
Universe with zero spatial curvature.

Second and most importantly, with Yukawa gravity the
backreaction e�ect holds in an infinite Universe. Indeed,
in the limit N æ Œ (R finite), the ratio of gravitational
energies in the discrete and continuous models, i.e. the
ratio between e�ective and real gravitational constants,
reads

lim
NæŒ

Ge�
G

= 1
�2(R/⁄)

C
1 ≠

2
5

3
R

⁄

42
�

3
R

⁄

4D
(48)

¥
Rπ⁄

1 ≠
3
5

3
R

⁄

42
. (49)

Recall that R is essentially the size of a cell of the discrete
model. Physically speaking, it thus represents the typical
distance between e.g. two galaxy clusters, or equivalently
the size that would have a cluster if its density were the
mean density of the Universe, that is R ≥ 20 Mpc. If
gravitation is assumed to depart from the Newtonian
behavior on cosmological scales only, then ⁄ ≥ H

≠1
0 , and

we find (R/⁄)2
≥ 10≠6, which is a negligible correction.

However, if it is modified on scales smaller than R, then
Ge� goes quickly to zero, as shown in Fig. 5.

Let me stress that the correction that we are talking
about here is not the usual cosmological consequence of
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Figure 5. E�ective gravitational constant Ge� for the expan-
sion dynamics of an infinite discrete Universe with Yukawa
gravity.

modifying our theory of gravity. Such an e�ect indeed
is already taken into account in a homogeneous model.
The backreaction e�ect encapsulated in, e.g., Eq. (48) is
an additional change in the expansion dynamics, which is
not accounted for in a model where matter is described
as a continuous fluid4.

V. CONCLUSION

The question of whether a strictly homogeneous and
isotropic model for the Universe is capable of predicting
its expansion dynamics accurately is fundamental in cos-
mology. One peculiar aspect of this question concerns the
validity of the fluid limit, i.e. whether a universe continu-
ously filled with matter behave identically to a universe
filled with matter clumps. In this article, I investigated
this issue by comparing two models of a finite Universe:
in the first one matter is distributed on a lattice; in the
second one it homogeneously fills the box.

In Newtonian gravity, the net e�ect of the discreteness
of the distribution of matter is shown to slightly weaken
spatial curvature compared to the homogeneous case, by
a factor 1 ≠ N

≠2/3 where N is the number of particles in
the model. This result agrees with earlier results for finite
lattice cosmologies in GR [28, 30, 33], showing that the
corresponding backreaction e�ect is actually Newtonian.
This correction vanishes in an infinite universe, and is

very small (< 10≠6) in a realistic finite universe. It also
appeared that such a result crucially relies on the fact
that any isolated distribution of mass gravitates similarly
to a point mass, which can be regarded as a consequence
of Gauss’s law.

Gauss’s law is very specific to Newtonian gravity and
GR5. It is generically violated in alternative theories,
such as massive gravity or f(R) theories. I illustrated
this phenomenon with the simple example of Yukawa
gravity, characterized by an exponential suppression of
gravitational interactions beyond distances controlled by
the graviton’s Compton length ⁄. The di�erence between
discrete and continuous cosmologies turns out to be qual-
itatively di�erent from the Newtonian case: first it does
not only lead to a renormalization of spatial curvature,
and second the corrections hold in an infinite Universe.
The expansion law of a clumpy Universe is expected to
significantly di�er from the predictions of the inhomo-
geneous model if ⁄ . 20 Mpc, a value which is by far
allowed by current experiments [69].

The above results question the trustworthiness of the
cosmological tests of any modified theory of gravity that
violates Gauss’s law. Indeed, in such a situation the
expansion dynamics predicted by a Friedmann-Lemaître-
Robertson-Walker model does not match the actual grav-
itational dynamics of the late-time, structured Universe.
The amplitude of this mismatch must be estimated for any
analysis of the cosmological data in the scope of modified
theories of gravity.
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4 This must be taken as a proof of principles, because in fact a
homogeneous Yukawa universe does not gravitate [65]

5 Formulating an equivalent of Gauss’s law in GR is not trivial,
but the possibility of constructing Swiss-cheese models with ei-

ther Schwarzschild [19], LTB [66, 67], or Szekeres [68] holes is a
convincing indication that such a law should exist.

: Compton wavelength of the graviton�

R : radius that the largest bound structures should have 
if they had the mean density of the Universe


