Learning about perturbation theory
from Numerical Relativity: implications
for computing observables.

Tom Giblin
May 29, 2018
CosmoBack, Laboratoire d’Astrophysique de Marseille
Marseille, France

1511.01105, 1511.011086, work done with James Mertens
1608.04403, to appear Glenn Starkman, and Chi Tian



The History of Hubble’s Law

General Relativity
 F-L-RW say that a static Universe isn’t a solution to GR

e Give a mathematical description of the relationship
between scale factor and energy density

Einstein Introduces the Cosmological Constant
Hubble (Lemaitre?) Discovers the expanding Universe
e This expansion matches the F-L-RW prediction
Einstein rescinds Cosmological Constant

Distant Supernova cause us to re-insert the Cosmological
Constant (Dark Energy)



The History of Hubble’s Law

General Relativity
 F-L-RW say that a static Universe isn’t a solution to GR

* Give a mathematical description of the relationship
between scale factor and energy density

Einstein Introduces the Cosmolo¢ This is done under a set of

Hubble (Lemaitre?) Discovers the assumptions. Do we
understand (or trust these?)

e This expansion matches the F-LE W Crcaicach
Einstein rescinds Cosmological Constant

Distant Supernova cause us to re-insert the Cosmological
Constant (Dark Energy)



Gravity is Non-Linear

 We like to separate scales when doing physics
problems (e.g. what happens here, stays here)

 Non-linear physics can mix up scales - power
transferred between scales Is often referred to as
cascades or inverse-cascades

 The Averaging Problem : When we talk about the
expansion of the Universe on the largest of scales, is
there any contribution from smaller scales?




Gravity is Non-Linear
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Averaging

 Generally a Hubble Volume is taken to be the region
over which we do averaging — we all agree that
different Hubble patches could have different
expansion rates (causality, right?)

H° =~ (4000 Mpc)°

* Yet there is structure at (just) smaller scales
o Galaxy Clusters ~ 1 —10Mpc

e Inter-Cluster Distances ~ 50 Mpc




Can fully non-linear GR help
address these effects?
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What can we do?

 You can do a little better by
making gauge choices that
reduce the number of
parameters or
(re)parameterize so that you
have nice equations for..
some.. of them...

* Even then they are extremely
difficult to numerically
stabilize
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Abstract

Numerical relativity is the most promising tool for theoretically modeling the in-
spiral and coalescence of neutron star and black hole bi hich, in turn, are
among the most promising sources of glawtatmnal radiation for future detection
i i iew numerical relativity

a brief introduction to the

3+1 de(ompo ition of Einstein’s atio we dis important components of
al relativity, including the mltlal data problem, reformulations of Einstein’s
equations, coordinate conditions, and strategies for locating and handling black

e then outline ho

’ S k holes, and revie
of inspiral and coalescence simulations.
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2.1 Foliations of Spacetime




What we have to do...

* Luckily there are a set of new approaches. We use the
most common of these: the BSSN formalism.

 Itis based on the ADM metric decomposition

- < —a? + BBk B )
b = o Vo)

 We we introduce more parameters than (minimally)
necessary so that the equations are easier to solve




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

« We can then track the spatial 3-metric
o =,

 as well as the extrinsic curvature

- 1
Ki; = e*?A;; + g%‘jK




In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

 We can then track the spatial 3-metric
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In Cosmology

 We can fix the gauge (we will give up being able to
create black holes, as well as some other concessions)
to focus on spatial slices

e We ST AN the spatial 3-metric
keeping track of 1o
the size of local % — € Ti
volumes

e as well as the extrinsic curvature

Think of this as . 1
measuring the local K;; = 64¢A7;j = e
expansion rate 3




Importantly

These variables have well-

1 behaved differential equations

0;0p = ——K and are a complete description
; O of GR without additional
OtV = —2A4;; constraints

. 1
OrRK = A §K2 +4n(p+ S)
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Importantly

These variables have well-

1 behaved differential equations
Orp = — EK and are a complete descrlptlon
5.~ =a e For most of the work here we tional
il % ; chose synchronous gauge @/nts
N (cosmology) / geodesic slicing
Yt = 4y AT 2 (Numerical GR)
Gtzé_lij — 6_4¢(Rz’j o Q= 1 5Z = (0

0, = 2T A7* — g—wa K — 167747 S; + 1247 9;¢ .




With a Source

e As a first-guess; we take a Universe to be filled with a
pressureless, non-interacting® perfect fluid with

(il
e This fluid obeys a fluid equation,
) — ) =4

e which vanishes in synchronous gauge. *Therefore the
the fluid doesn’t evolve (in our coordinates)




How do we parameterize
success?

 Reproducing GR requires the additional satisfaction of a set of
constraints

e The Hamiltonian Constraint:
efb . €5</5 S5¢

_ i T gt € 2 5
H =~YD;Dje® — §R+? i A — EK 1+ 21e’>?p =0
e The Momentum Constraints:
2

M" = D;(eS? A7) — §€6¢DiK — 8me'??S' =0

« While the BSSN method is analytically equivalent to GR, the
numerical implementation can still propagate spurious solutions
If you leave the constraint surface




Weren’t you going to talk
about physics?

e So we have a numerical

framework AT

Let’s start a simulation where

we have a volume of the - v b——
Universe with some density ' |
perturbations

o AP | ) 2
¥ B G

Then solve the initial

condition problem (and put all

the inhomogeneities in the

volume elements not the 4
expansion rates)




The initial value problem

* By whatever means
necessary, we begin with the
assumption of homogeneous
extrinsic curvature, and the
metric response (to the
source) is just in the
conformal factor,

=T

 So that the initial conformal

factor must obey the T 5
following situation, 0— D + Py VoY = =2m°py




What can we tell about the
distribution of K?

« We can now compare the
statistics of K as a function of
the initial density contrast

e And how that statistic
changes in time




Constructing Null Geodesics

e We start with the geodesm equation
d> " L o P @t b

d)\2 b dX  d)

* recast in terms of the independent variable (of the code)
d=X8 T XEE o 4R dXP dx*
720 Y @ G i | ¥ ah o U

e where we will define

e — =@ - V) el = Bl




Which gives us a set of
equations to solve....

 Which needs to be solved
along a set of trajectories

e We don’t know where we end

dX? o up (only where they start)

AT =AY — [ e And they don’t lie on lattice
dE iy ints.
dV’L 7 0 kyrt ) (3) i k ija j@ )
= @y (Viosmna — KjpVPve + 2K — OTL VE) — 4i99,0 - Vg8



No Problem

 We start an large number (500) in arbitrary positions,
and in arbitrary directions

 We interpolate the fields along the paths (the lattice
points are pretty close together)

e At the end of the simulation we can look at the
histories of the particles and draw Hubble Diagrams



Averaged Observers

e Good News:

 Almost
indistinguishable
agreement with
LCDM (and with
QM=1)

* Bad News:
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* Only redshift of
0k



We look at the residuals

e |If we look at
the residuals
we see that an
averaged
observer see a
matter
dominated
Hubble
diagram
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Biased Observer (kinda)

* The deviations from ‘
“straight” aren’t huge
for this toy Universe

 So we take a set of
points that we know
will end up at
(approximately) the
same location

« Which is an over
density of about 10%




And the Residuals are...

0.0006

We see
a bias at
low Z
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And the Residuals are...

but no
Indications
(yet) that this
mimics
LCDM
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And the Residuals are...

but no
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mimics
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And the Residuals are...

High-redshift (z > 0.15) SNe:
» High-Z SN Search Team
o Supernova Cosmology Project

Low-redshift (z < 0.15) SNe:
» CfA & other SN follow-up

o Calan/Tololo SN Search
50 — Qu=03, Q,=0.7
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The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

DA—DA
k= s
D 4




The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

angular diameter distance in pure FLRW
Da— Dy
R = —
D 4

true (line-of-sight dependent) angular
diameter distance




The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

= / (rs — 1) LViq)dT
i a .TS oo
- D, =N ® = —= (208 +aB)

k=
D 4

In a Newtonian treatment




The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

= / (rs — 1) LViq)dT

s

0, W= 2 (9008 4wl
™ ()
DA Da = £(tem)/(tobs)

d? 2

Szl=t(R-d%)

direct integration of optical eq.




The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

= / (rs — 1) LVQLCDCZT

Ts
b — —g (zaB aB)

Da = L(tem)/P(tobs)

d? 5




The Weak Lensing
Power Spectrum

e A single, fully-relativistic simulation allows you to
calculate a single observable two ways

K= /(7“3 —7) LV?LCIDCZT D4 = l(lem)/¢(tobs)
7 Tse d? ;
= — (s ) —50=((R—0?)



The Weak Lensing
Power Spectrum

* A single, fully-relativistic simulation allows you to
calculate a single observable two ways

= /(fr‘s —7) LVi@dr D4 = l(lem)/¢(tobs)

o d2
— — (2aB/+ aB) = (=0(R-0?)

dA?




Newtonian map Relativistic map

difference map



The effect on the observable

correction effects are larger
on smaller scales - -~ Approximate Convergence

—— Full GR Convergence
----- Power Spectrum of Difference Map
— = Difference of Power Spectra

1078

Convergence power, £(+ 1)C/*
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The Weak Lensing
Power Spectrum

e In the limit in which you trust /inear perturbations

ds® = —(1 + 2®)dt" F 2a(t)Bydz ds
+a®(t) [(1 — 29)6;; + 20;0; E] dx"da’

e you can define the normal, gauge-independent quantities

d a0 B . B
@Bch——{cﬂ(E——)} \I/BE\IJ+Ha2<E——>
dt a a

* from gauge-gauge these quantities agree “well"




To what degree do we see departure from first-
order perturbation theory?

Any second-order perturbation theory is
gauge-dependent.



The linearized Einstein Equation
(asking for a friend)

ds* = —(1 + 2®)dt* + 2a(t) B ;dz"dt
+a’(t) [(1 — 2W)d;; + 20,0, F] do"da’

 when you linearize the full Einstein Equations you end up
with a set of constraints, e.g.

C=87Ga’ms + ® 4+ U — ¢°FE — 3aaE + 2aB + 4B = (

where 0T} = 6;;0p + 0;0,7°

* here we’re writing it in terms of the scalar modes only




Violation of the the linearized
Einstein Equation
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Another example

AFLRW

(det 71/6> — AFLRW




Another example
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Moral: gauge-

% dependent quantities
% @ differ and second-order
effects emerge

(det 71/6> — AFLRW

Ch S S B harmonic




There’s no indication that this has any effect on
observables, however.



Your Take-home

e First-Order perturbation
theory has a gauge-
iIndependent formalism

» Gauge-independent S
parameters agree well in 7 4 .\
different gauges/slicing 7

- Corrections to these o

parameters are gague-

dependent and look like

they change things (but

don’t yet have observable % oy
conseguences) At
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