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Overview

1 Parameter Inference
The posterior p(parameters|data)
Gaussian likelihoods
Data compression
Non-gaussian likelihoods
Approximate Bayesian Computation (ABC)

2 Bayesian Hierarchical Models (BHM)

3 Model Comparison
Do the data favour ΛCDM?
The future: what are the prospects to falsify ΛCDM?
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Bayesian Inference

What questions do we want to answer?

Given all the available data, what is the probability that cosmological
parameters take certain values? [Parameter Inference]

What is the relative probability of ΛCDM compared with alternatives?
[Model Comparison]

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 3 / 63



Bayesian Inference

What questions do we want to answer?

Given all the available data, what is the probability that cosmological
parameters take certain values? [Parameter Inference]

What is the relative probability of ΛCDM compared with alternatives?
[Model Comparison]

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 3 / 63



Bayesian Inference

What questions do we want to answer?

Given all the available data, what is the probability that cosmological
parameters take certain values? [Parameter Inference]

What is the relative probability of ΛCDM compared with alternatives?
[Model Comparison]

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 3 / 63



Notation

Data d ; Model parameters θ; Model M

Likelihood L(d|θ) = p(d|θ,M)

Posterior p(θ|d,M)

Prior π(θ) = p(θ|M)

Bayes theorem:

p(θ|d ,M) =
p(d |θ,M)p(θ|M)

p(d |M)

p(d|M) is the Bayesian Evidence, which is important for Model
Comparison, but not for Parameter Inference.

Dropping M dependence for now (we will return to it when we discuss
Model Comparison):

p(θ|d) =
L(d |θ)π(θ)

p(d)
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The Posterior

p(θ|d ,M)
If you just try long enough and hard enough, you can always manage to
boot yourself in the posterior. A.J. Liebling.
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It is all probability

The Posterior

Everything is focussed on getting at p(θ|d).

Computing the posterior

p(θ|d) ∝ L(θ)π(θ).

We need to make some choices:

What are the data, d?
What is the likelihood function L(d|θ)?
What is the prior π(θ)?
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Priors

Bayesian: prior = (usually) the state of knowledge before the new data are
collected.
For parameter inference, the prior becomes unimportant as more data are
added and the likelihood dominates.
For model comparison (see later), the prior remains important.
Issues:

Sometimes one wants an ‘uninformative’ prior, but what does this
mean?

Subjective vs Objective Bayesians
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Priors

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 8 / 63



Subjective Bayesians, uninformative priors, and
reparametrisation

Subjective Bayesian: specify the prior first, independently of the
experiment you are about to do.

‘Flat’ or ‘uniform’ priors: A common and apparently reasonable
‘uniformative’ prior is π(θ) = constant.
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Uninformative prior
A flat prior seems natural, but consider this problem. Imagine cartesian
coordinates in N dimensions, with the prior range being (−1

2 ,
1
2 ) for all

coordinates. The prior probability of being inside the N-sphere which just
fits inside the prior volume is

πN/2

2NΓ(1 + N/2)
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Uninformative?

Probability of being inside the N-sphere vs N:

p
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An apparently uninformative prior may be highly informative when viewed
a different way.
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Jeffreys Prior

Objective Bayesians would like to choose priors which influence the
final outcome as little as possible, i.e. are least amount informative

For one dimension, we can find a prior that is minimally information.
This is the Reference Prior, and in 1D is also the Jeffreys Prior:

πJ(θ) ∝
√

I (θ); I (θ) = −E
[
d2 lnL(d |θ)

dθ2

]

is the Fisher Information.

Note that this is against the spirit of Subjective Bayes - the prior
depends on the likelihood. The expectation (E) is taken over the data
at given θ.

Jeffreys Priors sometimes do not generalise well to multidimensional
problems. But sometimes they do - e.g. neutrino masses in oscillation
and cosmological experiments,
π(m1,m2,m3) ∝ m1m2 + m1m3 + m2m3 (Heavens & Sellentin 2018).
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Data
Summary Statistics

Data compression

We do not usually compute the probability of all the measured data, since
the number of these may be large (e.g. Planck has ∼ 1012 time-ordered
data). We compress them, e.g. to a map, or a power spectrum.

Summary Statistics

Typical summary statistics: correlation function or power spectrum
estimates. Already a massive data compression. Perhaps 102 − 104

summary statistics for Euclid or LSST.
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Likelihood
Gaussian Likelihood

Gaussian Likelihood

Often, we assume that the summary statistics are gaussian-distributed
(Handwave, handwave, central limit theorem . . .)

Is a Gaussian likelihood appropriate?

We rarely stop to question this, but we should. Let us run with it for now

Gaussian Likelihood

L(d|θ) = |2πΣ|−1/2 exp

[
−1

2
(d− µ)TΣ−1(d− µ)

]

µ(θ) is the mean signal, obtained from theory or simulation. Σ is the
covariance matrix. It may depend on θ. It is a problem (except for
Gaussian fields such as the CMB).
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Sampling

MCMC

If we know Σ, we need to evaluate the posterior as a function of
parameters θ. Not trivial if there are ∼ 10 parameters. Standard technique
is MCMC (Markov Chain Monte Carlo), where steps are taken in
parameter space, according to a proposal distribution, and accepted or
rejected according to the Metropolis-Hastings algorithm. This gives a
chain of samples of the posterior (or the likelihood).

MCMC example
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Covariance Matrices

1 If summary statistics are 2-point functions, Σ is a 4-point function.
Hard to compute for non-gaussian fields.

2 Either use analytic covariance matrix, or simulate (or both)

3 For simulated covariance matrices, an estimate Σ̂ can be unbiased.
Note that some effects are not included - e.g. super-sample
covariance.

4 However, Σ̂−1 is not unbiased. A fix is the Hartlap et al (2007)
correction: multiply by (N − 1)/(N − n − 2), where n = number of
data; N = no. of sims.

5 Better: marginalise over true Σ→ likelihood of Sellentin & Heavens
(2016)
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Covariance Matrices matter

e.g. KiDS weak lensing result (on S8 = σ8

√
Ωm/0.3) shifts by 1σ when

changing from an analytic to a simulated covariance matrix (Hildebrandt
et al 2017).
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Covariance Matrices

1 Need N > n + 2, where n = number of summary statistics

2 n could easily be 104 for LSST or Euclid

3 If Σ varies with cosmological parameters (as it will), then it is worse.
Estimating Σ would be prohibitively expensive

4 Solution: reduce n. More radical data compression
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Data Compression
MOPED algorithm

MOPED

Massively Optimised Parameter Estimation and Data compression
(Heavens et al. 2000). See also Zablocki & Dodelson (2016), Alsing &
Wandelt (2018), Charnock et al (2018).

Linear compression (note C = Σ):

yα = bα · d

1 Size of dataset reduced massively to the number of parameters.

2 Same Fisher Matrix! Fαβ ≡ −〈∂2 lnL/∂θα∂θβ〉
3 MOPED (originally proposed for a different purpose) can solve the

simulations problem: Heavens et al (2017) and Gualdi et al (2018).
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MOPED performance
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Is the likelihood Gaussian?

The data are not Gaussian-distributed, even when the CLT handwave
suggests otherwise. . .

Figure: CFHTLenS sims Gaussian data Most Gaussian terms

Sellentin & Heavens (2018).
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Non-Gaussian Likelihoods
A major challenge

3 approaches

Edgeworth expansion
Approximate likelihood
Bayesian Hierarchical Models
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Edgeworth Expansion

Joint distribution of all Fourier coefficients ak

Schematically:

p(ak|θ) = |diag[2πP(k)]|−1/2 exp

[
− |ak|2

2P(k)

] {
1 + B + T + B2 + . . .

}

P(k , θ),B(k, θ),T (k, θ) = power spectrum, bispectrum, trispectrum.
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Figure: Sellentin, Jaffe, Heavens 2018

Other ideas: gaussianising transforms (e.g. Hall & Mead 2018), clipping
(Simpson et al. 2011)
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Approximate Likelihood and Posterior
Machine-learning techniques: Approximate Bayesian Computation

ABC

Posterior: Rejection-sampling ABC.
Run many simulations.
Keep those that match the data.
Match: not everything, but match some summary statistics.
Very expensive

Fit the likelihood

Fit the sampling distribution p(d |θ) of mocks. e.g. Hahn et al (2018)
Feasible in relatively small numbers of dimensions
Probably impossible in very high dimensions
Data compression needed again
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Fitting the joint p(data, parameters)

Fit p(d, θ)

Use machine learning techniques such as GMM, KDE. Alsing et al. (2018)
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Bayesian Hierarchical Models
If you can, this is how to do it

BHM

We split the inference problem into steps, where the full model is
made up of a series of sub-models

The Bayesian Hierarchical Model (BHM) links the sub-models
together, correctly propagating uncertainties in each sub-model from
one level to the next.

At each step ideally we will know the conditional distributions

The aim is to build a complete model of the data

Principled way to include systematic errors, selection effects
(everything, really)
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Bayesian Hierarchical Models
A simple example

Often used to learn about a population from many individual
measurements. e.g. we measure the fluxes f̂i of a population of galaxies,
but the? have errors. What are the true number counts?

Assume (say) a power-law N ∝ f −α

Many (unobserved) true fluxes θi

Add noise: f̂i = θi + ni

Figure: Ned Wright

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 27 / 63



Bayesian Hierarchical Models
A simple example

Often used to learn about a population from many individual
measurements. e.g. we measure the fluxes f̂i of a population of galaxies,
but the? have errors. What are the true number counts?

Assume (say) a power-law N ∝ f −α

Many (unobserved) true fluxes θi

Add noise: f̂i = θi + ni

Figure: Ned Wright

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 27 / 63



Bayesian Hierarchical Models
A simple example

Often used to learn about a population from many individual
measurements. e.g. we measure the fluxes f̂i of a population of galaxies,
but the? have errors. What are the true number counts?

Assume (say) a power-law N ∝ f −α

Many (unobserved) true fluxes θi

Add noise: f̂i = θi + ni

Figure: Ned Wright

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 27 / 63



Number counts

α

θi

fî

Population parameter(s)

Individual properties

Observables

N
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Latent Variables

α

θi

fî

Population parameter(s)

Individual properties

Observables

N

θ are true 
fluxes, 

not directly 
observable. 

“Latent 
Variables”
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Ordinary Bayes vs Hierarchical Bayes

α

θi

fî

Population parameter(s)

Individual properties

Observables

N

Ordinary Bayes:
p(α|f̂ ) ∝ p(f̂ |α) p(α)

But we do not know p(f̂ |α)!

Hierarchical Bayes:

p(α, θ|f̂ ) ∝ p(f̂ |θ, α) p(θ, α)

∝ p(f̂ |θ, α) p(θ|α) p(α) (1)
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Bayesian Hierarchical Models

Computing the posterior

p(θ|d) may be impossible to calculate directly
e.g. p(cosmology parameters θ|shapes of galaxies d)
Solution: make the problem MUCH harder:
Compute the joint probability of the cosmological parameters and the
shear map

Joint distribution

p(θ | d) =

∫
p(θ,map |d)d(map)

p(θ,map |d) ∝ L(d | θ,map) p(map|θ)π(θ)
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Joint map, parameter sampling

Latent parameters

Each pixel in the map is a parameter
10 cosmological parameters, plus 1,000,000 shear values

One million-dimensional probability distribution to calculate
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Sampling

MCMC: Metropolis-Hastings fails since it is very hard to devise an
efficient proposal distribution

Gibbs sampling: effective if conditional distributions are known

Hamiltonian Monte Carlo (HMC) works in very high dimensions (e.g.
STAN)
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Weak Lensing BHM: Forward Model or Generative Model

P (d|s, N)P (d|s, N)

NN

dd

P (C)P (C)

CC

P (s|C)P (s|C)

ss

TT

P (t|s, T)P (t|s, T)

P
�
d|t, N̄

�
P
�
d|t, N̄

�

tt N̄̄N

dd

P (C)P (C)

CC

P (s|C)P (s|C)

ss

C = Power Spectrum

s = shear map

N = noise variance  
in each pixel 

d = noisy shear  
estimates in each pixel

Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 34 / 63



CFHTLenS

Alsing, AFH et al (2016). ∼ 130, 000 parameters; Gibbs sampling
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BORG and SDSS
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Weak lensing: CFHTLenS maps
Alsing, Heavens & Jaffe (2017). ∼ 250, 000 parameters; Gibbs sampling
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Weak Lensing BHM: Forward Model or Generative Model
Add in elements: uncertainties in redshifts, intrinsic alignments, etc
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CFHTLenS weak lensing

Band powers

Make EE ,BB,EB mode bandpowers the parameters
(cosmology-independent)

Figure: Alsing, AFH et al (2016)
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CFHTLenS cosmological parameters
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Summary of BHM

Bayesian Hierarchical Models are a way to build a statistical model of
the data by splitting into steps

Typically, decomposing into steps exposes what is needed - typically
many conditional distributions

For complex data, this may be the only viable way to build the
statistical model

The decomposition is usually very natural and logical

The model allows the proper propagation of errors from one layer to
the next,

including a proper treatment of systematics

One can often use efficient sampling algorithms to sample from the
posterior - precisely what one wants from a Bayesian statistical
analysis
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Model Comparison

A higher-level question than parameter inference, in which one wants
to know which theoretical framework (‘model’) is preferred, given the
data (regardless of the parameter values)

The models may be completely different (e.g. compare Big Bang with
Steady State, to use an old example),

or variants of the same idea. E.g. comparing a simple cosmological
model where the Universe is assumed to be flat, with a more general
model where curvature is allowed to vary

The sort of question asked here is often ‘Do the data favour a more
complex model?’

Clearly in the latter type of comparison the likelihood itself will be of
no use - it will always increase if we allow more freedom.
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Model Comparison

Assuming uninformative priors for the models (i.e. the same a priori
probability), the probability of the models given the data is simply
proportional to the Bayesian Evidence.

The Bayesian Evidence, or Marginal Likelihood, is the
denominator in Bayes’ theorem

p(θ|d) =
p(d |θ)π(θ)

p(d)

It is much more obvious if we include the model dependence as a
condition:

p(θ|d ,M) =
p(d |θ,M)π(θ|M)

p(d |M)

The Bayesian Evidence normalises the posterior, so is

p(d |M) =

∫
dθ p(d |θ,M)π(θ|M)
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Model Comparison
p(d |M) may not be large (but it is for ΛCDM)

Figure: The Planck power spectrum, with the theoretical model with best fitting
cosmological parameters.
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Bayesian Evidence or Marginal Likelihood

We denote two competing models by M and M ′.

We denote by d the data vector, and by θ and θ′ the parameter
vectors (of length n and n′).

Rule 1: Write down what you want to know.

Here it is p(M|d) - the probability of the model, given the data.

Use Bayes’ theorem:

p(M|d) =
p(d |M)π(M)

p(d)
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Bayesian evidence

The Bayesian Evidence is

p(d |M) =

∫
dθ p(d |θ,M)π(θ|M),

If a model has no parameters, then the integral is simply replaced by
p(d|M)

The relative probabilities of two models is

p(M ′|d)

p(M|d)
=
π(M ′)

π(M)

∫
dθ′ p(d |θ′,M ′)π(θ′|M ′)∫
dθ p(d |θ,M)π(θ|M)

With uninformative priors on the models, p(M ′) = p(M), this ratio
simplifies to the ratio of evidences, called the Bayes Factor,

B ≡
∫
dθ′ p(d |θ′,M ′)π(θ′|M ′)∫
dθ p(d |θ,M)π(θ|M)
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The Kass & Raftery scale

| lnB| Interpretation

< 1 not worth more than a bare mention
1 to 3 positive
3 to 5 strong
> 5 very strong

But better to stick with probabilities rather than descriptions.
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Nested models

We assume that M ′ is a simpler model, which has fewer parameters in
it (n′ < n)

We further assume that it is nested in Model M ′, i.e. the n′

parameters of model M ′ are common to M, which has p ≡ n − n′

extra parameters in it. These parameters are fixed to fiducial values in
M ′.

Note that the more complicated model M will (if M ′ is nested)
inevitably lead to a higher likelihood (or at least as high), but the
evidence may favour the simpler model if the fit is nearly as good,
through the smaller prior volume.
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Nested models

We assume uniform (and hence separable) priors in each parameter,
over ranges ∆θ (or ∆θ′). Hence p(θ|M) = (∆θ1 . . .∆θn)−1

B =

∫
dθ′ p(d |θ′,M ′)∫
dθ p(d |θ,M)

∆θ1 . . .∆θn
∆θ′1 . . .∆θ

′
n′
.

Assume prior range includes (virtually) all the likelihood.

In the nested case, the ratio of prior hypervolumes simplifies to

∆θ1 . . .∆θn
∆θ′1 . . .∆θ

′
n′

= ∆θn′+1 . . .∆θn′+p,

where p ≡ n − n′ is the number of extra parameters in the more
complicated model.
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over ranges ∆θ (or ∆θ′). Hence p(θ|M) = (∆θ1 . . .∆θn)−1

B =

∫
dθ′ p(d |θ′,M ′)∫
dθ p(d |θ,M)

∆θ1 . . .∆θn
∆θ′1 . . .∆θ

′
n′
.

Assume prior range includes (virtually) all the likelihood.
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Bayesian Evidence

Challenges: The evidence requires a multidimensional integration over the
likelihood and prior, and this may be very expensive to compute.

Nested sampling (multinest, polychord), where one tries to sample
the likelihood in an efficient way.

Approximations: e.g., AIC and BIC may be unreliable as they are
based on the best-fit χ2, and from a Bayesian perspective we want to
know how much parameter space would give the data with high
probability. Also don’t include the prior. Not Bayesian.

MCEvidence may be useful for computing Evidence from pre-existing
MCMC chains
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Gaussian Example

Assume everything is gaussian
Let M0 be d ∼ N (0, σ2), and M1 be d ∼ N (µ, σ2), where the prior on µ
is gaussian with zero mean and variance Σ2. Let the measurement be
d = λσ.

p1(d |µ) =
1√
2πσ

e−(d−µ)2/(2σ2)

and

p1(µ|d) =
p1(d |µ)π1(µ)

p1(d)
=

p1(d |µ)π1(µ)∫
p1(d |µ)π1(µ)dµ
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Gaussian Example

Hence

BF01 =
p1(d |µ = 0)π1(µ = 0)

p1(d)

i.e.,

BF01 =

1√
2πσ

e−d
2/(2σ2) · 1√

2πΣ
1√
2πσ

1√
2πΣ

∫∞
−∞ e−(d−µ)2/(2σ2)e−µ2/(2Σ2)dµ

so

BF01 =

√
1 +

Σ2

σ2
exp

[
− λ2

2(1 + σ2

Σ2 )

]
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Gaussian Example

BF01 =

√
1 +

Σ2

σ2
exp

− λ2

2(1 + σ2

Σ2 )


If λ� 1, then B01 � 1 and M1 is favoured. If λ ' 1 and σ � Σ, then
M0 is favoured (Occam’s razor). If likelihood is much broader than prior,
σ � Σ then BF01 ' 1 and nothing has been learned.
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Figure: The Bayes Factor for a gaussian likelihood (variance σ2), and a gaussian
prior (variance Σ2). The x axis =log10(Σ/σ); the y axis is datum/σ. From Trotta
(2008).
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Summary

Bayesian formalism can easily be generalised to model comparison

Resulting integrals over parameter space may be challenging to
compute

Evidence ratios have sensitivity to the prior, even asymptotically
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Planck parameter inference
Assuming ΛCDM
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Figure: ΛCDMPlanck parameters
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Extensions to ΛCDM
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BAYESIAN EVIDENCE: WHICH MODELS 
ARE PREFERRED? PLANCK TT,TE,EE DATA

1. LCDM 
2. Curvature 
3. Non-standard lensing amp 
4. Non-standard lensing fid 
5. Neutrino number 
6. Neutrino mass 
7. Running of ns

8. Tensor-to-scalar ratio 
9. Dark Energy not Λ 
10. Isocurvature modes  
12. Non-standard BBN 
16. Neutrino number and mass 
18. Neutrino number and BBN 
20. Sterile neutrinos

ln B

Relative 
probability  
of extended 
model 
over preferred  
model
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- 0.01

- 0.001

Figure: Heavens et al 2107
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Planck tensions

 

Figure: Planck Flatness
Alan Heavens (ICIC, Imperial College) CosmoBack May 31, 2018 58 / 63



Extensions to ΛCDM
WITH CMB LENSING

1. LCDM 
2. Curvature 
3. Non-standard lensing amp 
4. Non-standard lensing fid 
5. Neutrino number 
6. Neutrino mass 
7. Running of ns

8. Tensor-to-scalar ratio 
9. Dark Energy not Λ 
10. Isocurvature modes  
12. Non-standard BBN 
16. Neutrino number and mass 
18. Neutrino number and BBN 
20. Sterile neutrinos 
21. Sterile neutrinos and r
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State of Play
Analysis of Planck chains using MCEvidence (Heavens et al 2017)

Figure: The Bayes Factor for Planck

H0

Local Hubble constant measurements give H0 = 73.2± 1.7 (Riess et al.
2016). Planck gives 67± 0.7 km/s/Mpc (assuming ΛCDM). With Riess
H0, wCDM is mildly favoured (lnB ' 1.5− 2).
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Planck Dark Energy Equation of State

w(a) = w0 + wa(a− 1).
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Forecasting the future

Trotta (2007).
It may be especially hard to falsify ΛCDM by making similar measurements
to now, given that most data point to consistency with ΛCDM. This is
especially true for models with extra parameters.
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Conclusions

Assuming that data are gaussian-distributed will almost certainly not
be good enough

For likelihood-free parameter inference, or for approximating sampling
distributions, massive data compression will also be necessary

MOPED offers a way to do this without loss of information

Bayesian Hierarchical Modelling is the principled solution to the
analysis challenge

For models that make subtly different predictions from ΛCDM, a very
careful analysis will be necessary, including careful treatment of
systematics and full propagation of errors

Marginalising over uncertain parameters weakens sensitivity to new
physics

Model comparison may struggle to prefer non-ΛCDM models in future
with high probability, unless we make new types of observation
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