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The scope of modern cosmology



Preamble
• Modern cosmology: an exercise in hubris

• <80’s - “missing mass” (since ’30-s) - CMB - hot-big-bang model - 
BBN - non-baryon DM - framework: search for 2 numbers

• 75-82 - (GUT) inflation + fluctuogenesis -> CDM model

• 80’s, 90’s growing problems - age, bias, cluster evolution, flatness from 
CMB, lack of decelleration …. late time inflation - quintessence (or Λ)

• ΛCDM: Remarkably successful

• Cosmology is the search for 6 numbers?

• but needs inflaton, DM, quintessence - who ordered those?

• Early universe looks in good shape, but maybe the DE (and DM + other 
coincidences?) is telling us we are doing something wrong

• Modified gravity?

• Conventional gravity but misinterpreted (this meeting)



Outline

• Does lensing by structure bias the distance-redshift relation?

• Backreaction bias in the Hubble diagram

• Some challenges for backreaction



Context: cosmological parameters from the CMB
It is usually assumed that we are looking here at a 
spherical surface at z~1100 with D = D0(z=1100)

But are we?



How far away is the CMB?

Boomerang

closed

open



Hubble diagram from SN1a - assumes no flux bias from lensing



Outline of talk
• Some preliminaries

• what do we mean by distance in cosmology?

• basics of gravitational lensing - light deflection, shear & magnification

• Historical review:

• Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder

• things look fainter in an inhomogeneous universe

• Weinberg '76 - 

• no effect (flux conservation)

• Schneider et al. ('84..'94): magnification and focusing theorems

• things look brighter

• significant others .... recent studies

• NK + John Peacock MNRAS2016

• we reconcile the above, apparently contradictory, results



What do we mean by "distance" in cosmology
• Locally - directly measure distances:

• radar echoes - parallaxes 

• Not useful in cosmology. Instead we have:

• redshift (reflects change in size of the Universe)

• `conformal' or `comoving' distance χ - appears in metric

• angular diameter distance: θ = d / DA

• luminosity distance: F = L / (4 π DL2)

• apparent distances of "standard candles" or "measuring rods"

• This talk: Lensing magnifies or de-magnifies: changes DΑ, DL: 

• they become random functions of direction

• Q: does structure bias angular sizes or flux densities?

• if it does then we will get the wrong cosmological parameters



Optical properties of a lumpy universe

• Homogeneous universe: metric: ds2 = -dt2 + a2(t)(dx2 + dy2 + dz2)

• a(t) obeys Friedmann's equations

• x is "conformal" coordinate (galaxies have fixed x)

• Lumpiness: ds2 = -(1 + 2 φ(x)) dt2 + a2(t)(1 - 2 φ(x))(dx2 + dy2 + dz2)

• φ(x) determined by density fluctuations δρ(x) (Poisson's equation)

• very good approximation because velocities are slow

• Light rays are null paths (ds = 0)

• Same as light rays in "lumpy glass" with inhomogeneous n(x)

• effective refractive index n(x) = (1 - 2 φ(x) / c2)

• n(x) = (coordinate speed of light)-1

• Snell's law:  Deflection θdef ~ φ / c2 ~ GδM / r c2





basics of gravitational lensing: Δt, deflection
• Gravitational time delay (Shapiro '65): Δt = 2⎰dλ Φ/c2

• λ = distance: Φ = gravitational field from Δρ/ρ

• measured in "strong lensing" - multiple images of quasars

• fundamental concept (see Blandford & Narayan '86)

• Light deflection θ1 ~ ⎰dλ∇Φ/c2 ~ GM/bc2 ~ (Hλ/c)2Δ

• cumulative deflection is a "random walk"

• θ ~ N1/2 θ1 ~ (Hλ/c)3/2Δ

• Δ = Δρ/ρ ~ ξ1/2 ~ 1/λ

• θ dominated by "supercluster" scale structure (~30 Mpc)

• quite large ~ few arc-minutes ~ 10-3 radians at high z

• but (usually) not directly observable 



basics of lensing: Δt, θdef + magnification & shear

• Time delay Δt = 2⎰dλ Φ/c

• Light deflection - cumulative deflection θ ~ N1/2 θ1 ~ (Hλ/c)3/2Δ

• θ dominated by large scale structure (~30 Mpc)

• Weak lensing: observe the gradient of the deflection angle

• described by a 2x2 image distortion tensor

• trace: κ (kappa) → magnification (changes size of objects)

• 2 other components: γ → image shear (changes shapes)

• ~1% at ~ degree scales for sources at z ~ 1 (few % @ z=1000)

• but grows with decreasing angular scale 

• potentially very large effects from small-scale lumpiness
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Weinberg's argument (that <magnification> = 1)
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Abstract

We consider the changes which occur in cosmological distances
due to the combined effects of some null geodesics passing through
low-density regions while others pass through lensing-induced caus-
tics. This combination of effects increases observed areas correspond-
ing to a given solid angle even when averaged over large angular scales,
through the additive effect of increases on all scales, but particularly
on micro-angular scales; however angular sizes will not be significantly
effected on large angular scales (when caustics occur, area distances
and angular-diameter distances no longer coincide). We compare our
results with other works on lensing, which claim there is no such ef-
fect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not
the effect is significant for number counts depends on the associated
angular scales and on the distribution of inhomogeneities in the uni-
verse. It could also possibly affect the spectrum of CBR anisotropies
on small angular scales, indeed caustics can induce a non-Gaussian
signature into the CMB at small scales and lead to stronger mixing of
anisotropies than occurs in weak lensing.

Subject headings:

cosmology - gravitational lensing - cosmic microwave background

1

Figure 1: A lens L and resulting caustics on the past light cone C−(P )
(2-dimensional section of the full light cone), showing in particular the cross-
over line L2 and cusp lines L−1, L1 meeting at the conjugate point Q. The
intersection of the past light cone with a surface of constant time defines
exterior segments C−, C+ of the light cone together with interior segments
C1, C2, C3.

7
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Ellis, Bassett & Dunsby '98 critique of Weinberg '76
• EDB98 make two points:
• Weinberg assumes that which 

is to be proven
• we agree: W76 assumes 

that the surface of constant 
z around a source (or 
observer) is a sphere

• Small scale strong lensing 
causes the surface to be 
folded over on itself so total 
area greatly enhanced
• quite possibly true

• Thus Weinberg's claim is 
disproved
• we disagree: W76 still 

applies if multiple images 
are unresolved

Lensing bias in the distance-redshift relation 7

Figure 2. Grossly exaggerated illustration of the form of the sur-
face of constant redshift in the case of strong lensing. The lines are
rays of light that start on, and are perpendicular to, a wavefront
on the left. This surface is distorted as a result of time delays
induced by the lenses that the light has previously encountered
(not shown). The rays are propagated to a constant redshift sur-
face on the right. This can either be viewed as the surface of
sources that an observer sees to have redshift z at some epoch,
or as the surface around a source hosting observers who see that
source to have redshift z. Weinberg’s flux conservation argument
relies on the assumption that e.g. the area of the outer surface
here is identical to the area of a sphere of the same constant z
in an unperturbed universe. If it is, the flux density, averaged
over observers on this surface is the same as for a homogeneous
universe. In reality, this surface is slightly deformed, and its area
is biased, so the mean flux density is not precisely unbiased. But
as we argued in the caption to Figure 1 and discuss further in
§3 and in appendix A, the bias is predominantly caused by large-
scale density perturbations that are well understood, and the bias
is extremely small and, for all practical purposes, negligible.

2.2.1 Conservation of inverse magnification

Kibble & Lieu discussed the average magnification using a
model of uncorrelated random clumps of matter. But more
significantly they emphasised the important and general dis-
tinction between averages over sources – or equivalently over
areas on the source plane – and averages over directions on
the sky (i.e. averages weighted by solid angle):

“We may choose at random one of the sources at redshift z,
or we may choose a random direction in the sky and look for
sources there. These are not the same; the choices are di↵erently
weighted. If one part of the sky is more magnified, or at a closer
angular-size distance, the corresponding area of the constant-z
surface will be smaller, so fewer sources are likely to be found
there. In other words, choosing a source at random will give on
average a smaller magnification or larger angular-size distance.”

For source averaging, Kibble & Lieu reason that since
the distance is, by definition, D =

p
dA/d⌦ and the flux

density S is proportional to 1/D2 then, if D0 is the distance

for a standard source viewed along an unperturbed path,
the amplification is µ = D

2
0/D

2 and its average over area on
the source (or observer) surface is

hµiA = D
2
0

⌧
d⌦
dA

�

A

= D
2
0

R
dA (d⌦/dA)R

dA
=

4⇡D2
0

A
. (10)

We have already invoked this result above in saying that
Weinberg’s result hµiA = 1 implicitly assumes that the area
is A = 4⇡D2

0 and is una↵ected by lensing.
For direction averaging, they show that a precisely anal-

ogous statement can be made concerning hµ
�1

i⌦:

hµ
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(11)

so, again if one assumes the total area A is unperturbed, it
is the direction average of µ�1 that is conserved.

In the absence of strong lensing both of the above results
are unexceptionable. But with multiple imaging the last step
in (11) is questionable: if an element of surface area can
be reached via paths that start in disjoint elements of solid
angle, it would be counted multiple times – so that one would
expect

R
d⌦ (dA/d⌦) to be greater than A. Kibble & Lieu

claim that (11) is of general validity, but in doing so they
take a very di↵erent definition of magnification than the
one employed here. Rather than taking D

2
0µ

�1 to be the
modulus of dA/d⌦, they include the sign of the Jacobian of
the transformation from angle to area coordinates, so that
for some images µ

�1 is formally negative. When there are
multiple images, and in general there are an odd number
2n+ 1 of these, then n of them have odd parity (Blandford
& Narayan 1986); these therefore have negative Jacobian,
which e↵ectively cancels the multiple counting of areas. In
(10) the integral over area is understood to be over the outer
surface – which has a one-to-one mapping to solid angle –
and the parity of the outer surface is, as shown again by
Blandford & Narayan, always even. Since the parity is not
easily observable, (11) is of limited practical utility when
there are strong lenses. But to the extent that strong lensing
can be ignored – if the optical depth is very low or if one is
concerned with unresolved compact sources or with the size
of large structures (such as acoustic peak scale ripples in the
CMB) – then it is the mean of the inverse of the absolute
magnification that is conserved.

These results can also be understood in terms of the
probability distribution for amplification. One can imagine
calculating µ = D

2
0d⌦/dA for an ensemble of rays fired in

random directions and propagated a path length D0. Denot-
ing the probability distribution for µ in such an experiment
by P⌦(µ) then P⌦(µ)dµ is the fraction of solid angle for
which µ lies in a range dµ around µ, so P⌦(µ)dµ = d⌦/4⇡.
If there are no multiple images, the element d⌦ maps to an
area dA = D

2
0d⌦/µ. The fraction of the total area is thus

dA/A = D
2
0d⌦/µA = (4⇡D2

0/A)µ�1
P⌦(µ)dµ; but this must

also be equal to PA(µ)dµ, where PA(µ) is the probability
distribution for µ over area, so the two probability distribu-
tion functions are related by PA(µ) = (4⇡D2

0/A)µ�1
P⌦(µ).

c� 0000 RAS, MNRAS 000, 000–000



Enter Schneider, Ehlers, Seitz etc... ('80s, '90s)

• Two consistent threads:
• Lens equation:

• at least one image is made brighter
• Optical scalar equations (Sachs 1961):

• -> focusing theorem (Seitz et al. 1994)
• Things viewed through 'clumpiness' are further 

than they appear...



Seitz, Schneider & Ehlers (1994)



Seitz, Schneider & Ehlers 94

2 Kaiser & Peacock

magnification µ ⌘ S/S0, where S is the actual flux density
and S0 is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµiA = 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD

2
0/D

2
iA = 1,

where D0 is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R↵�k

↵
k
�
/2 is the local Ricci

focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D0, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D0

in the denominator, to obtain the linearised averaged focus-

ing theorem

hD̈i/D0 = �h⌃2
i < 0. (2)

This implies that hDi < D0 so objects viewed through inho-
mogeneity have distances that are systematically decreases

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D0 ⇠ h

2
i, where  is the usual

first order lensing convergence and �D ⌘ D�D0. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h

2
i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.

Furthermore, h2
i is a strongly decreasing function of aver-

aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0/D
2
iA = 1. First, the focusing theorem is concerned

with hD/D0i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i⌦ it is the
inverse magnification that is conserved: hµ�1

i⌦ = 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);

c� 0000 RAS, MNRAS 000, 000–000



More on the focusing theorem: 
• Derived from Sachs '61 "optical scalars"

• from A.K. Raychaudhuri's equation

• transport of expansion, vorticity and shear

• R = Rabkakb  local effect of matter in beam

• Σ2 is the cumulative effect of matter outside the beam

• Σ being the rate of image shearing

• Like cosmological acceleration equation:

• d2a/dt2 = - 4πG(ρ+3P/c2)a

• so Σ2 here plays the role of pressure!

• Also recalls Hawking-Ellis singularity theorem

• both terms are positive => focusing

• e.g. Narlikar (Introduction to Relativity):

• "Thus the normal tendency of matter 

• is to focus light rays" 

2 Kaiser & Peacock

magnification µ ⌘ S/S0, where S is the actual flux density
and S0 is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµiA = 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD

2
0/D

2
iA = 1,

where D0 is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R↵�k

↵
k
�
/2 is the local Ricci

focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D0, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D0

in the denominator, to obtain the linearised averaged focus-

ing theorem

hD̈i/D0 = �h⌃2
i < 0. (2)

This implies that hDi < D0 so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D0 ⇠ h

2
i, where  is the usual

first order lensing convergence and �D ⌘ D�D0. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h

2
i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.

Furthermore, h2
i is a strongly decreasing function of aver-

aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0/D
2
iA = 1. First, the focusing theorem is concerned

with hD/D0i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i⌦ it is the
inverse magnification that is conserved: hµ�1

i⌦ = 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);

c� 0000 RAS, MNRAS 000, 000–000



Narlikar on the focusing theorem



even more on the focusing theorem: 

• What's going on?  This seems to conflict with Weinberg!
• Schneider et al are adding lenses - not redistributing matter

• Does this explain the apparent conflict with flux conservation?
• No. Let D = D0 + D1 + ... take the average .... and linearise, 

• gives averaged focusing theorem

• So there is a tendency for structure to focus beams
• decrease of distance - qualitatively as found by Clarkson et al. 2014

• i.e. a big - and possibly even divergent - effect!
• So Weinberg was wrong?

2 Kaiser & Peacock

magnification µ ⌘ S/S0, where S is the actual flux density
and S0 is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµiA = 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD

2
0/D

2
iA = 1,

where D0 is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R↵�k

↵
k
�
/2 is the local Ricci

focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D0, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D0

in the denominator, to obtain the linearised averaged focus-

ing theorem

hD̈i/D0 = �h⌃2
i < 0. (2)

This implies that hDi < D0 so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D0 ⇠ h

2
i, where  is the usual

first order lensing convergence and �D ⌘ D�D0. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h

2
i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.

Furthermore, h2
i is a strongly decreasing function of aver-

aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0/D
2
iA = 1. First, the focusing theorem is concerned

with hD/D0i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i⌦ it is the
inverse magnification that is conserved: hµ�1

i⌦ = 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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ABSTRACT
Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing

causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond l D 2000. We also Ðnd that lensing produces a nonzero mean magniÐcation of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magniÐcation
has a negligible a†ect on the CMB power spectrum. A new expression for the lensed power spectrum is
derived, and it is found that future precision observations of the high-l tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.
Subject headings : cosmic microwave background È gravitational lensing

1. INTRODUCTION

Previous discussions of gravitational lensing by large-
scale structure have concentrated on calculating the shear
and convergence along unperturbed light paths, i.e., what
the geodesics would be were there no Ñuctuations (see, e.g.,

and references cited therein). Three basicSeljak 1996
methods have been adopted. The Ðrst is by numerical simu-
lation (see, e.g., Makino, & EbisuzakiFukushige, 1994).
This method often su†ers from limited resolution and
overly idealized cosmological models. Another method has
been to use a model where light travels freely in a constant
background density between clumps of localized mass den-
sities et al. Dunsby, & Ellis(Fukushige 1994 ; Bessett, 1997).
This is not considered to be a realistic cosmological model
because of the wide range of length scales on which galaxy
clustering is observed. What appears to be the best method
thus far is to take a smooth Ðeld of density Ñuctuations and
calculate the shear and convergence along unperturbed
light paths. This can be done by using optical scalars (Gunn

et al. or equivalently by using1967 ; Blandford 1991)
methods based on those of Kaiser (1992).

In particular, has applied the techniques ofSeljak (1996)
to the lensing of the CMB. He found thatKaiser (1992)

lensing results in a relatively small smoothing of the CMB
power spectrum that makes peaks and troughs somewhat
less distinct. This smoothing is because of Ñuctuations in the
magniÐcation of structures on the surface of last scattering.
The average magniÐcation was assumed to be zero, as it is
to Ðrst order. Seljak also found that evolving the deÑecting
density Ñuctuations by linear or nonlinear theory makes
little di†erence in the results for l \ 1000.

We show here that deviations of the light paths from their
form in an unperturbed universe result not only in Ñuctua-
tions in the magniÐcation around a mean of zero but also in
a shift in the mean to a positive value. Light paths are
attracted by regions of overdensity and repelled by regions
of underdensity. This means that the column density of
mass seen by the observer is larger on average than what
would be expected using unperturbed light paths. The pre-
dominantly positive second derivatives of the potential in
overdense regions produce a shear between light paths that
acts to magnify images. At the same time, the average shear

between light paths is, to a lesser extent, reduced by the
increase in the density of light paths in overdense regions.
The net result is that objects on surfaces of equal redshift or
cosmological time will on average appear larger than in an
unperturbed universe. The apparent violation of Ñux con-
servation can be resolved by realizing that the area of a
surface of constant redshift is smaller when light paths are
perturbed. In angular size coordinates, light travels
““ slower ÏÏ in regions of low potential.

The other and more important aim of this paper is to
show that after lensing, the CMB power spectrum will be
enhanced over the unlensed power spectrum at small
angular scales or large l. Power is transferred upward in l
in the damping tail. This e†ect was Ðrst treated by

& Schneider in their early paper onBlanchard (1987)
lensing of the CMB. It is independent of the existence of a
nonzero mean magniÐcation.

This paper is organized as follows : In the next section, we
introduce the formalism used to calculate the lensing e†ects
of large scale structure. In it is shown how lensing will° 3
change a generic CMB power spectrum. In the formal-° 4
ism is applied to some speciÐc cosmological models.

2. CALCULATING THE MAGNIFICATION

Throughout this paper, the universe is assumed to have
Robertson-Walker geometry together with small Ñuctua-
tions. This implies that the density Ñuctuations are isotropic
and the universe is homogeneous on average. We also
assume that the lensing is weak so that there are not multi-
ple images of a single source. It can be shown without diffi-
culty that the cross section of regions with densities over the
critical density required to produce multiple images is
rather small, so that they should not play an important role
in the statistical properties of lensing over large regions of
sky Ehlers, & Falco(Schneider, 1992 ; Kochanek 1995).

In the longitudinal gauge with conformal time, the metric
takes the form

ds2\ a(q)2[[(1 ] 2/)dq2] (1 [ 2/)dx2] ,

dx2\ dr2] g(r)2[d2h ] sin2 (h)d2/] , (1)

where / > 1 and g(r) \ MR sinh (r/R), r, R sin (r/R)N for the
open, Ñat, and closed global geometries, respectively. The
curvature scale is BecauseR\ o H0(1 [ )[ )")1@2 o~1.

1
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FIG. 1.ÈFirst two moments of b(s) for some CDM models are given here. The straight line is in a COBE-normalized model. The two curves ofSb
A
(s)T

each type are (upper) and (lower). The COBE-normalized models have only linear evolution of the matter power spectrum. All the modelsSb
A
(s)T Sb

M
(s)T

have h \ 0.6, and is the rms density Ñuctuation in a sphere of radius 8 h~1 Mpc.p8

FIG. 2.ÈThe lensed CMB power spectrum for a CDM model with h \ 0.6, 1, and The top panels are the lensed and unlensed spectra,)0\ )
b
\ 0.04.

and on the bottom are their ratios. The left-hand panels show n \ 1.0, normalized models. The linear matter power spectrum evolution and thep8\ 0.6
isotropic lensing approximations are shown. The right-hand panels show the e†ect of tilting the power spectrum with COBE normalization and linear
evolution. In the top right-hand panel, the solid curves are the unlensed spectra.
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MaxwellÏs equations are conformally invariant, for the
purpose of Ðnding light paths, the expansion of the universe
can be ignored as long as conformal time is used. In general,
light follows a geodesic that is a solution to

d
dj gkl

dxl(j)
dj \ 1

2
gab,k

dxa(j)
dj

dxb(j)
dj ;

p0\ dq
dj \ a(t)~1 dt

dj . (2)

(In this paper, except where otherwise speciÐed, commas in
subscripts refer to partial derivatives with respect to the
coordinates whose labels follow the comma.) Choosing
j \ q by normalizing p0 and taking the unperturbed path to
be the r-axis, the evolution equation to Ðrst order in the
potential / becomes

d2dh
dq2 \ [2g(r)~2/,h \ [2g(r)~1/,M . (3)

Since to Ðrst order in /, this equation can beq\ [r ] q0solved as a function of r :

dh
i
(r)\ dx

i
(r)

g(r)
\ [ 2

g(r)
P

0

r
dr@g(r [ r@)/,i(r@) . (4)

This must be evaluated along the path that the light bundle
has followed. The Ðrst-order e†ects arise from evaluating it
along the unperturbed path. To Ðnd the correction because
of the perturbation of the path, we expand the potential to
Ðrst order :

dh
i
(r)\ dx

i
(r)

g(r)
\ [ 2

g(r)
P

0

r
dr@g(r [ r@)

] [/,i(r@) ] dxk(r@)/,ik(r@)] , (5)

where the potential is now evaluated along the unperturbed
path. Repeated indices are summed over the two com-
ponents perpendicular to this path. Likewise, the dx(r@)
inside the integral can be approximated by the Ðrst-order
deÑection calculated from evaluated along theequation (4)
unperturbed path. The shear tensor that measures the dis-
tortion and expansion of an inÐnitesimally thin beam is
then

'
ij
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o ] *'
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dr@g(r@)g(r [ r@)/,ij(r@)

] 4
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0
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dr@
P

0

r@
drAg(r [ r@)g(r@[ rA)

] [g(r@)/,k(rA)/,ijk(r@) ] g(rA)/,jk(rA)/,ik(r@)] . (6)

In general, this expansion is not justiÐed for Ñuctuations of
all scales. However, it can be shown by explicit calculation
that higher order terms are quite small in realistic models. If
we assume that the relevant scales are much smaller than
the curvature scale we can Fourier decompose the potential

/(r) \P d3k
(2n)3 /8 (k,q\ q0[ r)e~ikxe~i*rkr`g(r)Á Õ kM+ . (7)

In this section we assume that the angles involved are small
enough that a local Cartesian coordinate system, can beh6 ,
set up with the usual inner product.

The average value of the shear tensor can be found by
substituting into and using theequation (7) equation (6)
assumption that the Fourier components are uncorrelated,
i.e., q)d(k [ k@). In the caseS/8 (k,q)/8 (k@, q)*T \ (2n)3PÕ(k,
of the linear evolution of the potential Ñuctuations in a
universe dominated by nonrelativistic matter, the time
dependence of the potentials can be factored out of its
Fourier components, In this case,/8 (k, q) \ D(q)/8 (k).

S'
ij
T \ [2d

ij
P d3k

(2n)3 k
M
2 k

M
2 PÕ(k)W [r, rk

r
, g(r)h6 Æ k

M
] ,

(8)

W (r, rk
r
, g(r)h6 Æ k

M
)\ 1

g(r)
P

o

r
dr@
P

0

r@
drAD(q@)D(qA)

] g(r [ r@)g(r@[ rA)[g(r@)[ g(rA)]
] e~iK(r@~rA)kr`*g(r@)~g(rA)+Á Õ dkML . (9)

can be interpreted as consisting of two contri-Equation (9)
butions. The term with g(r@) is because the average potential,
as sampled by the light paths, is below average. The g(rA)
term results from the density of light paths being higher in
areas of low potential. The reduced separation between
light paths makes them converge less rapidly. The second
term almost cancels the Ðrst term because in popular
models the k values that contribute most are large enough
that the oscillations of the exponential restrict r@[ rA to be
small. It appears that the coherence length of structure is
small enough to make this magniÐcation negligible.

The time enters into these calculations because it is a
function of the radial coordinate that parameterizes the
light path. All of the signiÐcant quantities calculated in this
section, such as the second term in contain twoequation (9),
integrations over this parameter. However, when
o r@[ rA o (\o q@[ qA o ) is large, larger than some ill-deÐned
““ coherence length,ÏÏ the potential Ñuctuations at these
two points are uncorrelated and do not contribute signi-
Ðcantly to the integrals. If the potential changes slowly
enough, it will not change signiÐcantly in the time it takes
light to travel one ““ coherence length,ÏÏ and we can take
S/8 (k, q)/8 (k@, q@)*T \ (2n)3D[q6 \ (q] q@)/2]2PÕ(k)d(k [ k@).
We will call this the average time assumption. It can be
avoided at the expense of complicating the evaluation of the

These complications of time evolution are largelyintegrals.1
avoided in the Ñat cold dark matter (CDM) model because
the potential is time independent in linear theory.

The quantity of interest for applications to the CMB is
the di†erence in the deÑections of light paths that are
observed to have an angular separation of on our sky.s6
This can be found by integrating the shear tensor

b
i
(s) 4

P

~s@2

s@2 '
ij
(h)dh

j
. (10)

b(s) has both a small average because of second-order terms
and a variance that is dominated by Ðrst-order terms. Com-

1 If a signiÐcant amount of hot dark matter exists or there has been
substantial nonlinear evolution, the factorization of into k- and q-/8
dependent parts will not be possible. In these models the whole power
spectrum must be kept within the r integrals, which in general must be
evaluated numerically.
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ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average ‘‘reciprocal’’ magnifica-
tion (in one of several possible senses) is precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average ‘‘direct’’ mag-
nification.We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headinggs: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
gravitational lensing

1. INTRODUCTION

There has been considerable debate about the average magni-
fication effect of gravitational lensing by randomly distributed
clumps of matter. Weinberg (1976) argued that the average mag-
nification produced by randomly distributed masses is exactly the
same as that in a homogeneous universe of equal mean (or pre-
clumping) density—the magnification produced by the clumps is
largely canceled by the Dyer-Roeder effect (Dyer&Roeder 1972,
1973). However, his arguments have been criticized by Ellis et al.
(1998), who pointed out that they ignore the effects of caustics.
These authors also introduced an important distinction between
two measures of distance, which they called ‘‘area distance’’ and
‘‘angular-size distance,’’ although in fact both can be applied to
either lengths or areas. Holz & Wald (1998) developed a general
formalism for estimating the probability distribution ofmagnifica-
tion, as well as shear and rotation, and obtained numerical results
for a range of cosmological parameters using Monte Carlo simu-
lation of light paths. Claudel (2000) studied a number of differ-
ent examples and concluded that to first order, small deviations
from homogeneity would not change the average magnifica-
tion. On the other hand, Rose (2001) gave an analytic argument
using a spherically symmetric model of the universe with the
aim of showing that objects in an inhomogeneous universe ap-
pear, on average, more magnified than those at the same redshift
in a homogeneous universe with the same mean density. This is
not in contradiction with Claudel’s result, because the effect
Rose finds is of second order.

The purpose of this paper is to reexamine this question us-
ing a simple and explicit analytic approach.We show that under
rather general conditions there is at least one measure by which
the average reciprocal magnification is exactly the same as in a
Friedmann-Robertson-Walker (FRW) universe with the same
mean density. When there is strong lensing, the different mea-
sures of distance diverge. It is easier to deal initially with recip-
rocal magnification, because it goes to zero rather than infinity
on the caustics. Later, however, we do consider average direct
magnification.

Our starting point is in some respects similar to that of Holz
&Wald (1998), based on using the geodesic deviation equation
to follow the paths of light signals back in time. Our goal is
more restricted, in that we focus only on average magnification,
not rotation and shear. On the other hand, we are seeking ana-
lytic rather than purely numerical estimates, so the assumptions
we make are slightly more restrictive, although still, we believe,
of wide applicability.
Specifically, we assume that in addition to a smooth, homoge-

neousmatter component with density !h, there is another compo-
nent comprising widely separated, slow moving, and randomly
distributed mass clumps (say, galaxies, groups, or clusters). For
simplicity, we suppose initially that each clump has the same
mass M. However, it is easy to generalize the discussion to in-
clude a distribution of masses, even an evolving one.
Holz & Wald (1998) assumed that the universe can be de-

scribed by a ‘‘Newtonianly perturbed FRWuniverse’’ (Futumase
& Sasaki 1989), i.e., the metric is an FRW metric with the time
and space parts multiplied by (1þ 2") and (1" 2"), respectively,
where the convention of c ¼ 1 is adopted here and henceforth.
With various assumptions on " and the matter distribution, they
showed that " obeys a Poisson equation with #! ¼ !" !̄ on
the right-hand side, where ! is the density and !̄ is the density of
the corresponding FRWuniverse defined by setting " ¼ 0. They
argue that to determine the way a light signal propagates, it is
sufficient to look explicitly only at the gravitational potential of
nearby clumps.
According to our assumptions, the density perturbation would

comprise two contributions, a spatially uniform negative back-
ground !h " !̄ and an occasional large positive contribution from
one of the clumps. For most of its journey, a light signal will be
traveling through a uniform background, but when it does pass
near a clump, the effects will be much larger. Under these con-
ditions it is reasonable to assume that we can deal with the ef-
fects of the clumps individually. We assume that the clumps are
small and slow moving enough that the gravitational effect of
each one may be treated in a Newtonian approximation, with a
time-independent Newtonian potential!. Moreover, we use the
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• Weinberg: <μ> = 1 when averaged over sources

• Kibble & Lieu: <1/μ> = 1 when averaged over directions on the sky

• latter is more relevant for CMB observations

• strictly only valid in weak lensing regime

‘‘plane lens approximation,’’ that is, we compute the angle of
deviation due to the clump by integrating the gradient of the
potential along the undeviated light path and assume that the
deviation effectively occurs at the central plane. As pointed out
by Metcalf & Silk (1997), this induces a small error because the
true light path passes closer to the center. However, the discrep-
ancy in the minimum distance from the center is very small, of
order the Schwarzschild radius of the clump. Hence, the error is
tiny and consistently negligible in the Newtonian approxima-
tion. Finally, we also assume that far from the clumps there is no
appreciable source of shear, so that theWeyl tensor vanishes. Of
course, no such assumption is made about the field near each
clump.

One criticism that might be made is of our assumption that the
clumps are well separated and randomly distributed. This does
not mean, however, that only one clump can significantly affect
a light signal at any time (although that may often be true), but
rather that the effects of different clumps are purely additive. This
seems to us generally a good approximation. The most serious
objection would probably be to the assumption that the clumps
are uncorrelated. Such correlations may invalidate the assump-
tion that there is no source of shear far from the clumps. Even in
such cases, the effect on the average magnification should be
small, since according to the Raychaudhuri equation the effect of
shear on expansion is of second order. These correlations might
also be thought to call into question the validity of the plane-lens
approximation, but this would be true only if the clumps are cor-
related in such a way that the deviated light paths sample a sig-
nificantly different environment. Given the extremely small error
in the deviation angle  (typically of the order of  2), this seems
very unlikely.

It is important to note that the ‘‘average magnification’’ for a
given redshift can mean several different things. In the strong-
lensing case, when caustics are present, imaged areas fold back
on themselves. In one sense, the magnification is negative in the
region beyond the caustic, because images are reversed. In
the distinction made by Ellis et al. (1998), in computing the
‘‘angular-size distance,’’ these regions are indeed counted neg-
atively, whereas the ‘‘area distance’’ is concerned with the total
area, including all the folds; in that case, every contribution is
taken positively.

There is another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky is more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source at randomwill give on average a smaller
magnification or larger angular-size distance.

Which of these definitions is appropriate depends on what
we choose to look at and what questions we want to ask. We re-
turn to the question of which definition to use in various circum-
stances in x 6.

Let us concentrate for the moment on the random-direction
averaging. The question we wish to address is this: How is the
average magnification affected by whether the matter is clumped
rather than smoothly distributed? We do this by examining the
geodesic deviation equation in the presence of clumps.

One other preliminary point should be made. What we are in-
terested in observationally is the averagemagnification of sources
at a given redshift z. But what we actually calculate is the average
of sources at the same affine distance k (along the backward null
geodesics from the present), which is not exactly the same thing.

We argue, however, that the difference is undetectably small. The
effect of passing near a clump of massM affects the relationship
between z and k in much the same way as the conventional grav-
itational time delay. Thus, the difference in z for fixed k is of the
order of H0GM times a logarithmic factor, which is negligible
under any reasonable conditions.

2. NULL GEODESICS

The Robertson-Walker line element for an open universe, with
k ¼ " kj j and c ¼ 1, is

ds2 ¼ dt 2 " a2(t)
dr 2

1þ kj jr 2
þ r 2 d#2 þ sin2# d’2

! "# $
; ð1Þ

or, equivalently, with ! ¼
R
dt/a(t) and r ¼ kj j"1/2 sinh ( kj j1/2"),

ds2 ¼ a2(!)

#
d! 2 " d"2

" 1

kj j
sinh2 kj j1=2"

% &
d#2 þ sin2# d’ 2
! "$

: ð2Þ

Of course, in the flat-space limit, kj j ! 0, r and " become
identical.

The Friedmann equation is

H2¼ 1

a2
da

dt

' (2
¼ 8#G

3
$m þ kj j

a2
þ !

3
; ð3Þ

where $m is the density of matter (assumed to be pressureless).
Consequently, the relation between the Hubble parameterH and
the redshift z ¼ a0/a(t)" 1 is H ¼ H0E(z), where

E 2(z) ¼ "m(1þ z)3 þ (1" "m " "!)(1þ z)2 þ "!; ð4Þ

in which, as usual, "m ¼ 8#G$m0/3H 2
0 and "! ¼ ! /3H 2

0.
We consider backward null geodesics from the origin at the

present time t0, with affine parameter k normalized so that ṫ(0) ¼
"1, where the dot denotes a derivative with respect to k. Then,

"!̇(k) ¼ "̇(k) ¼ ½1þ z (k)'2

a0
: ð5Þ

We now assume that in addition to a uniform distribution of
matter, there are random clumps present. Specifically, the mat-
ter density parameter "m may be written "m ¼ "hþ "g, where
"hrepresents a homogeneous distribution and "g represents a
random distribution of widely separated clumps, each of massM.
( It is easy to generalize the discussion to a distribution of masses,
or even to allow for a distribution changing with cosmic time.)

Consider a fiducial backward null geodesic and a second neigh-
boring null geodesic from the same point. We choose a Vierbein
e(%) at the origin, with e(0) in the t-direction and e(3) " e(0) tangent
to the fiducial geodesic. Then we parallel-propagate the Vierbein
along this geodesic and introduce transverse coordinates l ¼
(l 1;l 2), such that the transverse separation between the geode-
sics at affine distance k is

&x%¼ l' e
%
(' )(k): ð6Þ
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Recap of historical review
• Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder

• structure makes things look fainter on average

• Weinberg '76 - no effect for transparent lenses (flux conservation)

• Schneider et al. ('84..'94) (from Raychaudhuri, Sachs, Narlikar): 

• magnification and focusing theorems

• structure makes things look nearer (i.e. brighter)- a big effect

• Ellis, Bassett & Dunsby '97 - critique of Weinberg '76

• Metcalf and Silk '97: negligible (O(θ2) ~ 10-6) effect on the CMB

• Kibble & Lieu '05 - distinguished between source and direction averages

• Weinberg: <μ> = 1 averaged over sources (or area on source sphere)

• K+L: <1/μ> = 1 when  averaged over directions (as e.g. for CMB)

• Outstanding questions:

• How do we make sense of these apparently conflicting results?

• What is the relation to recent results from 2nd order Pertn Theory?



Recent developments...
• Backreaction: "have cosmologists erred in failing to take into account the 

inherent non-linearity of Einstein's equations?"
• cosmologists tend to do linear theory calculations
• but Einstein's equations (metric <-> matter) are non-linear
• averaging and non-linearity "do not commute"
• so is dark energy a mirage?

• requires calculations in 2nd order perturbation theory (v. technical)
• now mostly accepted that effects are too small to explain acceleration
• but maybe there are still interesting percent level effects:

• Clarkson, Ellis++ '12 - large (O(κ2)) source magnification
• Clarkson++ '14 - similarly large z-surface area increase

• violates Weinberg's assumption

• "backreaction" strikes back?

• and the size of the effect is qualitatively consistent with expectation of the 
focusing theorem (Seitz, Schneider & Ehlers)
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Appendix B: Alternative presentation of the area distance

This presentation groups terms into boundary terms and line of sight integrated terms.
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How relativistic corrections remove the tension with local H0 measurements

Chris Clarkson1, Obinna Umeh2, Roy Maartens2,3 and Ruth Durrer4

1Astrophysics, Cosmology & Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.

2Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
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The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model – which must be understood to at least the same level of precision. Subtle relativistic
e↵ects can lead to biased measurements if they are neglected. One such e↵ect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of H0

and those measured through the CMB and favours a closed universe.

I. INTRODUCTION

Cosmology has entered a precision era. The premier
cosmological dataset is the anisotropies and polarization
of the cosmic microwave background (CMB). This is not
only due to the highly accurate data, but also because
of its simple theoretical description, which allows accu-
rate calculations. Present CMB codes like CAMB [1]
and CLASS [2] are typically 0.1% accurate and, together
with contemporary data, provide a determination of ba-
sic cosmological parameters to the percent level – and
substantially lower in the case of curvature [3]. A key
problem with the current CMB measurements is that the
Hubble parameter H0 is significantly di↵erent from that
measured locally [4–6]. Why?

Parameter estimation from the CMB is extremely sen-
sitive to dA(z⇤), where z⇤ ' 1090 is the redshift of the
last scattering surface. More precisely it depends on the
angular size of the sound horizon, ✓ = r⇤/dA(z⇤), where
r⇤ is the sound horizon at last scattering. The Planck
collaboration [3] has reported ✓ = (1.04131± 0.00063)⇥
10�2, hence it measures this scale with an accuracy of
better than 10�3. The accuracy of r⇤ is slightly worse,
about 4.5 ⇥ 10�3, which is also the accuracy of dA(z⇤).
These numbers indicate that a change of a few percent
in dA(z⇤) is critical for parameter estimation of the CMB
at the present level of accuracy.

Most calculations of the CMB anisotropies are per-
formed within first-order perturbation theory and only
CMB lensing requires a second-order analysis. We con-
sider here the change in the angular-diameter distance
due to the presence of structures in the Universe to
second-order in perturbation theory. We show that it
is critical to include this change at the present level of
accuracy, as it induces changes to the theoretical model
much larger than the current measurements. It removes

the the tension between the CMB and local values of
H0. Furthermore, parameters such as ⌦m can be many
sigma away from their naive values without this relativis-
tic second-order correction.
The observed angular-diameter distance at observed

redshift zs in direction n is

dA(zs,n) = d̄A(zs)[1 +�(zs,n)], (1)

which has a perturbation �(zs,n) about the the back-
ground distance

d̄A(zs) =
1

(1 + zs)

Z zs

0

dz

(1 + z)H =
�s

(1 + zs)
. (2)

Here �s is the comoving distance (in the background ge-
ometry) to the source at redshift zs and H is the comov-
ing Hubble rate. The perturbation �(zs,n) comes from
the fact that the Universe is not actually homogeneous
and isotropic, but contains cosmic structures which in-
duce fluctuations in the geometry. At linear order in
perturbation theory, the lensing convergence  = ��
produces no change in the mean value hdAi (although it
does give a variance) [7]. At second-order, however, non-
linear e↵ects give a relativistic correction to the distance-
redshift relation that a typical observer would expect.
This correction can be calculated from the ensemble av-
erage:

d
e↵
A (zs)=hdA(zs,n)i= d̄A(zs)[1 + h�i(zs)], (3)

where we assume statistically isotropic Gaussian initial
perturbations, so that there is no dependence on direc-
tions (all directions receive the same correction). If it is
not correctly taken into account, the shift in the ‘back-
ground’ distance-redshift relation by h�i results in a shift
in the inferred cosmological parameters which appear in
the distance-redshift relation.
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JCAP11(2014)036
Figure 1. Fractional correction h�i(z) to the distance [see (1.3)] for a fiducial model ⌦m = 0.3, h =
0.68,!2

b = 0.0222, w = �1 and ns = 0.96. The correction is negative for z . 0.25, purely from the
local contribution. At higher redshift the shift arises from the aggregated lensing term (2.1). For
z & 10 the corrections grow / �

3
s, and are similar to an open ⇤CDM model with ⌦e↵

K ⇡ 0.0066 (grey
‘curved’, shown for high z).

The linear term vanishes on average by definition: h�dAi = 0. Then, flux conservation
implies, on average, h�2dAi ' 3h(�dA)2i/�s and consequently

h�i ' 3

2

*✓
�dA

�s

◆2
+

=
3

2

⌦

2
↵
, (1.5)

where  is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted
as a shift to the background geometry, this would have important implications for the analysis
of the CMB. An observed patch of the CMB sky such as a hot or cold spot of a fixed observed
angular scale will correspond to a physical area which is larger than the background value,
since the distance to it is larger. E↵ectively, it is the angular size of these hot and cold
spots, combined with a theoretical model for calculating both the distance to the CMB
and the sound horizon scale at last scattering, that determine many key parameters of the
cosmological standard model. Consequently, we anticipate a shift in the inferred background
cosmology when aggregated lensing is taken into account.

Here we quantify this shift for a flat ⇤CDM (concordance) background, see the result
plotted in figure 1, and we explore the potential consequences for precision cosmology. At low
redshifts the change to d̄A is small (|h�i| . 10�4), negative and dominated by local e↵ects
(from coupled velocity and Sachs-Wolfe terms). Recently [8] have estimated the e↵ect of this
change onH0 and especially on its variance measured with low-z data. For z & 0.5 the change
becomes positive and is dominated by second-order lensing e↵ects. It grows monotonically
until last scattering, and the distance to the CMB is increased by about one percent.

– 3 –
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Hence taking this shift to the distance into account together with local observations, the
CMB data remains consistent with a minimal flat ⇤CDM model. This is in contrast to
the standard calculation of distance where it is di�cult to relieve the tension between local
measurements of H0 [3–6] and the value from CMB observations.

Clearly, the analysis presented here is not definitive for several reasons. First, as men-
tioned above, the Planck measurements of cosmological parameters are not independent and
especially the Planck value of !m is not completely independent of the distance dA. We
have also assumed a simple linear transfer function [17]. A full likelihood analysis should be
performed with h�i properly included.

Furthermore, aggregated lensing not only leads to a average shift in the distance to the
CMB but � is actually direction dependent [13]. We expect its fluctuations to be imprinted
as additional fluctuations in the CMB. However, since the dominant contribution comes
from very small scales, we expect them to show up mainly at high ` > 2000 and we believe
that the e↵ect on the mean distance discussed here is the dominant one in present CMB
experiments. To do a fully consistent analysis, which combines second order fluctuations in
the distance with temperature perturbations, a 3rd order Boltzmann solver would be needed.
A interesting future project which is (far!) beyond the scope of the present paper.

We also note that higher-order contributions to h�i will be small, though ultimately
necessary as observations improve. We anticipate they will be dominated by terms such as
(�dA)4, which will lead to a percent level correction to our second-order correction. Thus,
the main contribution to aggregated lensing is from (2.1).

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic e↵ect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21]. The extraordinary amplification of aggregated lensing comes mainly
from the integrated lensing of structure on scales in the range 1–100Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the e↵ect using
a linear transfer function which slightly underestimates power on small scales at high redshift,
so this provides a robust lower limit to the overall amplitude. Higher-order corrections from
relativistic perturbation theory will enter O((�dA)4), making (2.1) the main contribution
in general.

This isotropic shift is particularly important for high redshift, apparently giving a change
to the distance to the CMB of one percent. What does this mean? We have argued that
the shift can be interpreted as a change to the inferred background cosmology. Assuming
that observations of the CMB really measure the area distance implies that fitting to the
minimal ⇤CDM model leads to an underestimation of the Hubble parameter by 5%. We
have considered the consequences for analysing the CMB, and have argued that parameter
estimation could be strongly a↵ected — parameter constraints can be shifted by more than
1�. Because the shift h�i increases the distance relative to the background, the corrections
to the background to compensate for this increase in distance are achieved by increasing h.
In particular, we have shown that a higher h is naturally preferred over the low value found
by Planck [3], in line with local data [4]. For current and future redshift surveys, the e↵ective

– 9 –



NK + Peacock 2015

• Weinberg assumes that the area of a surface of constant redshift is 
unperturbed by lensing by intervening structures
• same assumption is made by Kibble & Lieu
• seems reasonable since static lenses do not affect redshift
• and leads to conservation of e.g. source-averaged flux density

• but not strictly true and breaks down at some level
• What is the change in the area of the constant-z surface (or cosmic 

photosphere) caused by structure?



KP2015: closing the loophole in Weinberg’s argument4 Kaiser & Peacock

dA

λ

cosmic time

Surface of constant distance travelled

Surface of constant

Ωd

0

Figure 1. In a hypothetical universe with inhomogeneity in some
finite region of space, consider the mean fractional change to the
area of a surface of constant redshift, or cosmic time, which, in
the absence of structure, lies at comoving distance �0 (note that
our notation here di↵ers from that of Weinberg 1976, who used
� to denote a�ne parameter). We find that the area is biased,
but to an extremely small extent, as a result of two competing
e↵ects: (1) the radius reached by light rays is reduced because
they are not straight; (2) the surface is ‘wrinkled’ owing to time
delays induced by the density fluctuations. Regarding the first
e↵ect, a single lensing structure would cause a deflection ⇥1 ⇠ �
where � is the metric perturbation (or the dimensionless New-
tonian potential) and the corresponding fractional decrease in
distance reached would be �r/r ⇠ ⇥2

1. The e↵ect of N ⇠ �/L
of these structures with metric fluctuations of random sign – as-
sumed to have size L and lying along a path length � – would be
N times larger. So h�ri/r ⇠ h⇥2i ⇠ �2�/L where h⇥2i ⇠ N⇥2

1 is
the cumulative mean square deflection. As for the second e↵ect,
one can draw an analogy with the surface of a swimming pool
perturbed by random waves of small amplitude. These cause a
fractional increase in the area of the surface that is on the order
of the mean square tilt of the surface. Here the surface is per-
pendicular to the light rays, so we expect that the area increase
is also, to order of magnitude, h�Ai/A ⇠ h⇥2i. Both e↵ects are
caused predominantly by structures on scales of tens of Mpc, and
these give only a part-in-a-million e↵ect, counter to much larger
recent claims from relativistic perturbation theory. This is the
main new result of this paper, discussed at length in §3.

above arise partly from failing to make this distinction be-
tween distance bias and flux-density bias, but mostly from
ignoring the distinction between averaging over sources and
averaging over direction. We find that the RHS of (3) is the
direction averaged (rather than source averaged) amplifica-
tion and (4) is the bias in the source-averaged distance, while
the direction averaged distance, which is more relevant for
CMB observations, is

hD/D0i⌦ = 1�
1
2
h

2
i. (6)

The RHS of (5) is the source averaged inverse amplification
hµ

�1 = D
2
/D

2
0iA rather than the average over the observer’s

sky (it also happens to be the direction average of µ) and so
it does not reflect any increase in the area of the photosphere
or surface of constant z.

The rest of the paper consists of a calculation of the
perturbation to the area of a surface of constant redshift.

This is the net result of the competing e↵ects of wiggling of
rays, which reduces the radius they reach, and the wrinkling
of the surface via time delays, which increases its area. We
show, using both the the geodesic equation (appendix A)
and via the much more arduous route of the optical scalars
formalism (appendix D), that the area bias is on the order
of the mean squared cumulative deflection angle, not the
much larger mean squared convergence. This means that,
at least as far as sub-horizon scale structure is concerned,
Weinberg’s flux-conservation argument is actually good to
about one part in a million, and no radical changes to SN1a
cosmological inferences need to be made. The calculation
is somewhat involved, but a (only slightly over-simplified)
order-of-magnitude argument for why this should be the case
is given in the caption to Figure 1.

The outline of the paper is as follows: In §2 we com-
pute the statistical bias in quantities such as the apparent
distance under the assumption that area is unbiased by lens-
ing. In §2.1 we consider biases that arise when averaging over
sources. In §2.2, turning to the CMB, we consider the statis-
tics of quantities that are averaged over direction, rather
than averaging over sources. In §2.2.1 we consider the argu-
ment of Kibble & Lieu (2005) that the direction averaged
inverse magnification is conserved, and in §2.3 we recall the
calculations of Metcalf & Silk (1997). In §2.4 we calculate
the mean inverse magnification caused by a thin screen of
lenses and find this is zero, consistent with Kibble & Lieu
and we discuss the generalisation of this to a shell containing
deflectors of a finite size. We then give the statistical bias in
the direction averaged distance and magnification and show
that the latter nicely accounts for (3).

In §3 we expand on the simple-minded argument in the
caption to Figure 1 and attempt to give a heuristic expla-
nation of the results of the detailed calculation presented
in appendix A. We note that the argument above is over-
simplified in one respect, but we show that this does not
significantly alter the basic conclusion that the area bias
is essentially zero. In §3.3 we identify the scale of struc-
tures that dominate the ensemble e↵ect on the area. In §3.4
we consider fluctuations about the ensemble average area
increase that we have calculated. We argue that for sub-
horizon scale density perturbations alone these are small, so
the area of one observer’s sky will be close to the ensemble
mean, and the mean fractional change to flux densities will
be close to �h�Ai/A0. But for horizon scale perturbations
there is a first order change to the area that is typically on
the order of the metric perturbation for these modes and is
actually larger in mean modulus than the ensemble mean
from sub-horizon scale structure. In §4.3 we discuss how dif-
ferent ways of analysing CMB data could, in principle, result
in biased results, but argue that the conventional analysis
method (Hu 2000; Challinor & Lewis 2005) avoids this.

Appendix A contains the detailed calculation of the
mean perturbation to the photosphere area at second or-
der in the metric perturbations, arising from gravitational
time delays and the associated light path deflection (though
the result is obtained entirely as the average of the prod-
ucts of first order quantities). There, in §A1, we describe
why the weak-field model for metric fluctuations provides
an adequate description and we recall the analogy between
light propagation in a weakly perturbed FRW cosmology
and light propagating in a medium with spatially varying,
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2 effects:  
1) wiggly lines don't get as far as straight lines 
2) wrinkly surface has more area than a smooth one 

but both effects are ~(bending angle)2 ~ 10-6



What is the area of a wavy surface?

Or a lumpy sphere?



Key features of KP15 calculation of area of photosphere
• Calculations are rather technical, some key features are:

• Weak field assumption:

• we model the metric as weak field limit of GR

• but we allow for non-rel motion of sources

• these have negligible effects

• similarly for gravitational waves

• "photons can't surf a gravitational wave"

• going beyond 1st order can be estimated and is tiny effect

• the problem is isomorphic to light propagation in "lumpy glass"

• Boundary conditions:

• Perturbation theory calculations assume photosphere is constant z

• Not true.  It is more realistically a surface of constant cosmic time

• Pert. theo. results may be qualitatively OK, but fail quantitatively

• Final result for perturbation to the area of the photosphere is

12 Kaiser & Peacock

But there are two more factors we have not considered.
One is the possibility of a significant 2nd order (i.e. post-
Born approximation) contribution from �� itself, as this
multiplies the zeroth order expansion rate. But in fact this
turns out to be sub-dominant and can be ignored. Finally, we
need to consider the fact that  in d⌦0

/d⌦ is correlated with
the path length perturbation ��. This gives a 2nd order
term �4h��i/�. With  ⇠ �(�/L)3/2 and �� ⇠ �

p
�L

this is yet another contribution to �A/A ⇠ �
2
�/L so this

is also of order h⇥2
i so this does not change the conclusion

regarding the order of magnitude strength of the e↵ect (but
it does mean that the net e↵ect is not zero for non-evolving
metric fluctuations).

The final result for the fractional change in area, com-
bining the reduced distance travelled and the area enhance-
ment from wrinkling, is obtained in appendix A:

h�Ai/A0 =
1
�
2
0

�0Z

0

d� (2�(�0 � �) + �
2)J(�). (31)

This result is of second order in the metric fluctuations and
is valid at leading order in the assumed small parameter
L/�. For constant J this is h�Ai/A0 = +(2/3)�0J , which is
positive – so the competing e↵ects of paths wiggling and sur-
face crinkling do not cancel. However, as anticipated in the
order-of-magnitude argument presented in the Introduction,
the change is extremely small: roughly a part-in-a-million ef-
fect. Appendix A shows that J may also be interpreted as
the rate of change of the squared transverse deflection with
path length, so quite generally the perturbation to the area
is on the order of of the cumulative deflection angle squared.

If one is concerned with discrete sources, rather than the
CMB, then the observationally relevant area is not a surface
of constant cosmic time, but a surface of constant redshift.
For linear density perturbations – and we will shortly see
that the e↵ect is dominated by such perturbations – the
surface of constant cosmic time is not at constant observed
redshift because of the ISW e↵ect. One result of this, as we
show in §A2, is to change the first order perturbation to the
path�� – to sources at distance �0 as caused by structure at
distance � – introducing a factor 1 + (�0

/�)�(a
0
/a)�0 in the

integral in (29). Here �
0
⌘ @�/@⌘ and a

0
⌘ da/d⌘. Another

is that, unlike the photosphere, this surface is not normal to
the beam direction, so there is an extra factor 1 + ⇥02

/2 –
where ⇥02 is the squared angle between the normals of the
constant-z and constant cosmic time surfaces – to convert
from cross-section to area at constant z. These e↵ects, how-
ever, are only significant for sources at low redshift and do
not qualitatively change our conclusions regarding the size
of the e↵ects.

3.3 What size of structures are important?

Unlike h
2
i, one can argue that h⇥2

i is dominated by large-
scale structure, so that uncertainty from highly non-linear
small-scale structure is negligible, and the overall e↵ect is
definitely extremely small. The evidence from galaxy clus-
tering – in the quasi-linear and linear regime – is that
⇠ / 1/r2 or thereabouts. This measures the density vari-
ance, so the density contrast of structures of some scale L

is � ⇠
p
⇠ / 1/L. As we have seen, the mean squared de-

flection is h⇥2
i ⇠ N⇥2

1 ⇠ (HL/c)3�2. With � / 1/L this

Figure 3. Contribution to J for the the concordance model as a
function of wave-number. This quantity, when multiplied by the
path length gives the fractional perturbation to the area, which
we see here is dominated by modes of scale k�1 ' 50h�1Mpc.
See §A4.1 for details.

is an increasing function of scale. This increase does not
continue to indefinitely large scales in conventional mod-
els. As the spectral index increases the total variance con-
verges, with most of the variance coming from the logarith-
mic interval where n ' 0 or scales of tens of Mpc. This
is quantified in Figure 3 which shows the contribution to
J per logarithmic interval of wave-number from equation
(A34): dJ/d ln k = 2⇡ k�2

�. As can be seen, the modes
that contribute most strongly have inverse wave-numbers
k
�1

⇠ 50h�1Mpc, while non-linear structures have very lit-
tle e↵ect.

The shear � and the convergence  from sub-horizon
scale structures are much larger, being on the order of  ⇠

�⇥/L ⇠ (HL/c)1/2�. In contrast to the deflection angle
this is a decreasing function of scale. For ⇠ 100Mpc scale
structures with � ⇠ 15% the convergence is a few percent
(e.g. Seljak 1996) while the deflection is ⇠ 30 times smaller
(about a few arc-minutes or ⇠ 10�3 in radians), and h

2
i ⇠

103h⇥2
i. More quantitatively, equation (31) indicates that

the ensemble average of the fractional change in area caused
by lensing by large-scale structure along the line of sight is
very small, being slightly less than a part-in-a-million e↵ect.

3.4 Fluctuations in the area

We have calculated the ensemble average of the area of a
surface of some redshift z, but it is also relevant to ask if
there could be large fluctuations around this figure. Regard-
ing the second order e↵ects, we have already shown that
there is very little variation in the distance reached for con-
stant distance travelled. As for the increase in area from the
wrinkling of the surface, this depends on the square of the
angular tilt of the surface. This will certainly vary between
di↵erent directions, but for the scale of perturbations that
are significant for the mean bias there are a large number of
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but locally isotropic, refractive index (‘lumpy glass’). In §A2
we discuss the appropriate boundary conditions for the end
of the rays, and the distinction between surfaces of constant
z and the cosmic photosphere (the latter being a surface of
constant optical path in the lumpy glass analogy).

The resulting ensemble mean for the fractional area per-
turbation h�Ai/A0 emerges as a weighted integral along the
line of sight of

J ⌘ �8

0Z

�1

dy ⇠
0
�(y)/y = 2⇡

Z
k�2

�(k) d ln k, (7)

where ⇠
0
� is the derivative with respect to conformal (or ‘co-

moving’) background coordinates of the two-point spatial
auto-correlation function of the dimensionless Newtonian
gravitational potential fluctuations (divided by c

2); �2
� is

the dimensionless power spectrum of � (variance per ln k).
Physically, J is the rate of change with respect to path length
of the ensemble mean square angular deflection of a ray. It is
similar to the ‘J3’ integral (Peebles 1981) and is dominated
by large scale density fluctuations around the peak of the
matter power spectrum. This demonstrates rigorously that
the e↵ect is on the order of the mean squared cumulative
deflection angle, and is therefore many orders of magnitude
smaller than the statistical biases such as in (3), (4), (5) and
(6).

If the potential fluctuations are non-evolving then
h�Ai/A0 = (2/3)�0J where �0 is the conformal distance to
redshift z (in units where conformal distance has dimensions
of length). The value of J in the ‘concordance’ cosmologi-
cal model is J ' 9.9 ⇥ 10�11

h/Mpc (this is the asymptotic
value at high redshift when the potential is non-evolving;
at low z the potential decreases with time and J falls to
about 60% of this value at z = 0). The overall path length
is �0 ' 9800h�1Mpc so the net perturbation to the area of
the photosphere is h�Ai/A0 ' 6⇥ 10�7.

We argue in §4 that, while the calculation is performed
using perturbation theory, this is valid even if non-linear
lensing by very small scale structure causes the shear and
amplification of most lines of sight to high redshift to be
significant.

Several other technical calculations are consigned to ap-
pendices. In appendix B we calculate the first-order beam
expansion rate that is used in appendix A. In appendix C
we show how the result of Metcalf & Silk’s calculation of
the mean magnification, while qualitatively very similar to
ours, di↵ers at a detailed level, particularly in regard to the
e↵ect from nearby lenses. In appendix D we show how our
results can be obtained from the optical scalar formalism. In
appendix E we show how the non-vanishing inverse magni-
fication averaged over sources can be understood as arising
because light paths to sources tend to avoid over-dense re-
gions.

Although some of the detail in the appendices is admit-
tedly excessive in the face of what turns out to be a very
small correction, there is value in collecting this material
together. Flux conservation will probably continue to be of
great importance in gravitational lensing, and it is impor-
tant to understand the issue in depth. We hope the present
paper is a useful contribution to this process.

2 STATISTICAL BIASES

In this section we show how quantities such as distance
can be statistically biased. We consider both averages over
sources and over directions, presenting the conservation ar-
guments of Weinberg (1976) and Kibble & Lieu (2005) and
showing how powers of the distance may or may not be bi-
ased. We illustrate these general points with the specific case
of a thin deflecting screen.

2.1 Source averaged properties

2.1.1 Photon conservation

Weinberg (1976) argued that transparent lenses cannot
change the mean flux density of sources on the grounds of
conservation of the flux of photons. The idea is that if a
monochromatic source emits N photons per period of the
emitted radiation then there must also be N photons per
(redshifted) period passing through any surface of constant
redshift. Additionally, static lenses do not a↵ect the redshift
of sources. So, while individual sources may be magnified or
de-magnified, and some may be multiply imaged, the aver-
age fraction of photons from a source at redshift z that we
detect is the ratio of our telescope aperture to the proper
area of the sphere around each source on which the redshift
has value z. Averaged over the observers that uniformly pop-
ulate the sphere around a particular source, the flux density
is thus unbiased.

To obtain the quantity of more interest, which is the
mean flux density of sources seen by one observer, one can
argue that the average over the entire ensemble of pairs of
sources and the observers who see them to have redshift z

the flux density is also unbiased, and if we are not a spe-
cial observer the average over the sources that we see with
redshift z should also have unbiased flux density. Weinberg
thus concluded that sources are, on average, unmagnified
and that the conventional formula for D(z) remains valid.
In fact, as we show below, Weinberg’s result holds for every
observer, not merely in an ensemble-average sense.

This is a very powerful and general argument, which is
not restricted to the weak-lensing regime – though it does re-
quire that multiple images of sources from strong lensing are
either unresolved or that the flux densities of the multiple
images have been aggregated. If we define the magnification
of a source µ as the ratio of its flux density to that which
an identical source would have at the same redshift in an
unperturbed FRW model, or viewed along a path with no
inhomogeneity, and imagine the source sphere at redshift z

to be tessellated into a very large number of equal area ele-
ments, each containing one standard source, then averaging
over these sources is equivalent to averaging over area and
Weinberg’s argument is that hµiA = 1 where the subscript
indicates averaging µ weighted by area on the constant-z
surface.

The flux density is also inversely proportional to dA/d⌦,
the Jacobian of the transformation between position on
the source plane and angle on the observer’s sky (con-
servation of surface brightness means the flux density in-
creases with d⌦ for given dA). The average of the inverse
of the Jacobian, weighted by area on the source sphere, is
hd⌦/dAiA =

R
dA(d⌦/dA)/

R
dA = 4⇡/A. We emphasise
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where

but J = d<θ2>/dλ and Jλ is on the 
order of 10-6



NK + Peacock 2015 - 2nd point

• Perturbation to the area is on the order of the mean squared cumulative 
deflection angle

• This is a one-part-in-a-million effect
• dominated by large-scale structure

• Relativistic perturbation theory, focussing theorem etc. give perturbation 
to the distance that is on the order of the mean squared convergence
• much larger
• dominated by small-scale structure (possibly divergent)

• All claims for large effects are purely statistical effects:
• The mean flux magnification μ of a source is unity

• so <Δμ>source = 0
• but μ is a fluctuating quantity
• so any non-linear function of μ (e.g. D/D0 = 1 / √μ) will not average to 

unity



KP15: Statistical biases...
• Example: Source averaged distance bias:

• D/D0 = μ-1/2 = (1 + Δμ)-1/2 = 1 - Δμ / 2 + 3(Δμ)2/8 + ...

• so <D/D0>source = 1 + 3<(Δμ)2>/8 + ... = 1 + 3<κ2>/2 + ...

• Similarly for source averaged mean inverse magnification

• <D2/D02>source = 1 + 4 <κ2> + ...

• These are precisely the results for the mean perturbation to the distance and 
distance squared found by Clarkson et al. 2014

• But e.g. the latter is not the perturbation to the constant z surface area
• that would be the average over directions rather than over sources

• Similarly, Clarkson et al. 2012 claim mean source averaged flux magnification 
is <μ> = 1 + <3κ2 + γ2> + ... = 1 + <4κ2> + ....
• but this is the direction averaged magnification

• These come from non-commutativity of averaging and non-linearity
• <f(x)> != f(<x>) if x is a fluctuating quantity
• and have nothing to do with the non-linearity of Einstein's equations



What about the "focusing theorem"?

• 2 lessons from foregoing:
• 1) The theorem applies to a bundle of rays fired 

along a given direction
• i.e. a direction - not source-averaged quantity
• and paths to sources avoid over-densities
• so care is needed in interpreting this

• 2) D is a non-linear function of A
• so, because A is a fluctuation quantity, we 

automatically expect a statistical bias in D
• and the size of the effect is ~ <κ2>

• So is there a "normal tendency of matter to focus 
light rays"? 
• as inferred from the averaged focusing theorem

• or is this simply a statistical effect?

2 Kaiser & Peacock

magnification µ ⌘ S/S0, where S is the actual flux density
and S0 is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµiA = 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD

2
0/D

2
iA = 1,

where D0 is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R↵�k

↵
k
�
/2 is the local Ricci

focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D0, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D0

in the denominator, to obtain the linearised averaged focus-

ing theorem

hD̈i/D0 = �h⌃2
i < 0. (2)

This implies that hDi < D0 so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D0 ⇠ h

2
i, where  is the usual

first order lensing convergence and �D ⌘ D�D0. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h

2
i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.

Furthermore, h2
i is a strongly decreasing function of aver-

aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0/D
2
iA = 1. First, the focusing theorem is concerned

with hD/D0i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i⌦ it is the
inverse magnification that is conserved: hµ�1

i⌦ = 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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KP15 on the "focusing theorem"?
• We have developed the optical scalar transport equations in a form 

appropriate when one wishes to specify the metric fluctuations as a 
stochastic random field (with zero mean for k=0 component)
• interesting subtlety: one should not assume <δR> = 0
• in inflationary context, small scale space-time curvature fluctuations have 

to accommodate themselves within the (flat-space) boundary conditions 
imposed when the larger regions accelerate outside of horizon

• We have solved these to obtain the ensemble average of the perturbation to 
the area of a beam of specified solid angle fired off from the observer and 
propagating back to the source surface.

• We perform a double expansion, working to second order in δ(metric) and 
to lowest order in the inverse of "coherence scale"/Hubble scale

• Cancellation:  Not just "Born level", but 1st "beyond Born" also
• We were only able to solve for the case where metric fluctuations are non-

evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <ΔA/A> = - 2Jλ/3 + ....
• this is consistent with the more general result (variable J) found by more 

straightforward approach.
• An exactly analogous calculation for <ΔD/D> does not show cancellation 

and results in much larger (O(κ2)) result.  But just the statistical bias. QED

2 Kaiser & Peacock

magnification µ ⌘ S/S0, where S is the actual flux density
and S0 is the flux density a standard source would have at
the same z if the structure were smoothed out, Weinberg
says that hµiA = 1, where the averaging is over sources, or
equivalently over area on the source sphere (hence the sub-
script A). Alternatively, one can say that hD

2
0/D

2
iA = 1,

where D0 is the angular diameter distance in the smoothed
out background. This result, however, rests on the implicit
assumption that the area of the constant-z surface is unaf-
fected by lensing.

This invariance of the mean flux density, however, ap-
pears to contradict a well-known theorem of gravitational
lensing, stating that at least one image is always magnified
(Schneider 1984; Ehlers & Schneider 1986; Seitz & Schneider
1992). Taking a somewhat di↵erent approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D =

p
A obeys the ‘focusing

equation’:

D̈/D = �(R+ ⌃2). (1)

Here D̈ is the second derivative of D with respect to a�ne
distance along the bundle; R = R↵�k

↵
k
�
/2 is the local Ricci

focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
⌃2 is the squared rate of shear from the integrated e↵ect
of up-beam Weyl focusing – i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,
where beams obey D̈ = 0. (see Schneider, Ehlers & Falco
1992 and Narlikar 2010 for further details and discussion).

In the cosmological context Seitz, Schneider & Ehlers
(1994) therefore state that “a light beam cannot be less fo-
cused than a reference beam that is una↵ected by matter in-
homogeneities”, at least up until caustic formation and “no
source can appear fainter [...] than in the case that there are
no matter inhomogeneities close to the line-of-sight to the
source”. But it would be incorrect to conclude that inhomo-
geneities always cause magnification: this analysis actually
compares the flux density of sources in a universe containing
a uniform density component plus localised positive density
lenses with sources in a universe containing only the uniform
component. This is not quite the same as the real question
of interest, which is the mean degree of focusing caused by
perturbations about the mean density – i.e. lenses whose
density can be negative as well as positive.

In a spatially flat FRW model, bundles of rays em-
anating from a source or observer travel in straight lines
at a constant speed in conformal coordinates, so also obey
D̈ = 0. For general weak-field perturbations to such a model,
appendix D proves an analogue of (1) where the RHS is
�(�R+⌃2). For weakly perturbed bundles with D close to
D0, the unperturbed distance to redshift z, we can average
this equation, assuming h�Ri vanishes and setting D = D0

in the denominator, to obtain the linearised averaged focus-

ing theorem

hD̈i/D0 = �h⌃2
i < 0. (2)

This implies that hDi < D0 so objects viewed through inho-
mogeneity have distances that are systematically decreased

even when we allow correctly for the fact that the mean
mass of lenses is zero.

The transport equation for the rate of shear ⌃ (see ap-
pendix D) shows that, in the perturbative regime at least,
the resulting mean change in the distance from this cumula-
tive e↵ect of tidal shearing of beams by up-beam structure
is, at leading order, h�Di/D0 ⇠ h

2
i, where  is the usual

first order lensing convergence and �D ⌘ D�D0. The con-
vergence for galaxies at z ⇠ 1 is on the order of 1% at de-
gree scales, rising to a few percent for the cosmic microwave
background (CMB) at z ' 1000, so the mean squared value
is h

2
i ⇠ 10�3 (e.g. Seljak 1996), which is non-negligible.

Furthermore, h2
i is a strongly decreasing function of aver-

aging scale, so there is potentially a large e↵ect for compact
sources such as supernovae at high redshift.

While interesting and suggestive, one should not nec-
essarily conclude that (2) invalidates Weinberg’s argument
that hD2

0/D
2
iA = 1. First, the focusing theorem is concerned

with hD/D0i, which is not the same thing, and second the
focusing equation provides the apparent distance to the far
end of a ray propagated along some chosen direction from
the observer. Averaging this, as we shall discuss in more
detail presently, is not the same as averaging over sources.

1.2 Lensing and the CMB

The subject has received much further attention over the
years, though with varied results, and the scope has ex-
panded to incorporate lensing of the CMB.

A significant general development came from Kibble &
Lieu (2005), who emphasised the important distinction be-
tween averaging over sources – which is appropriate for SN1a
cosmology – and averaging over directions on the observer’s
sky – which is more appropriate for CMB studies. They went
on to show that, averaged over the sky with equal weight per
unit solid angle ⌦, which we will denote by h. . .i⌦ it is the
inverse magnification that is conserved: hµ�1

i⌦ = 1, at least
to the extent that multiple lensing is unimportant. But, as
with Weinberg’s argument, Kibble & Lieu also assume that
the area of the constant-z surface is unperturbed.

Despite the conservation arguments, many lensing anal-
yses have continued to claim large e↵ects in the mean. Fre-
quently, such calculations make use of Swiss-cheese mod-
els. Kantowski, Vaughan & Branch (1995) and Kantowski
(1998), for example, claim to confirm Kantowski’s earlier
conclusions in his 1969 paper and show there should be large
e↵ects for SN1a cosmology. Ellis, Bassett & Dunsby (1998)
claim that Weinberg’s assumption of invariance of area may
be strongly violated by strong lensing from small-scale struc-
ture if one is considering observations of supernovae. Clifton
& Zuntz (2009) find ⇠ few percent bias in source magni-
tudes using Swiss-cheese models. Bolejko (2011a), also us-
ing Swiss-cheese models, finds that the distance to the CMB
last-scattering surface is strongly a↵ected by structure, with
significant impact on cosmological parameter estimation.
Similar results are presented in Bolejko (2011b) and Bolejko
& Ferriera (2012). Bolejko (2011a) provides a very useful and
extensive review of other studies, some of which (e.g. Marra
et al. 2007) find large e↵ects; some which find e↵ects at the
level of a few percent (which would still be significant if cor-
rect); while others claim that the e↵ect is very small. An
important example of the latter is Metcalf & Silk (1997);
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Optical scalars (in weak-field GR or lumpy glass)26 Kaiser & Peacock
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ṙ0 = ẑ ṙ = ẑ
+K · x

ṙ00
ṙ0

Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)

ṙ0 = ẑ+ ẋ+ (rx � ẋ@z � ẑ(ẋ ·rx))ñ�� (D7)

One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ00) = R(ṙ0�ṙ00).
This will be a linear function of the rotated displacement
x00 = R(r0 � r00) with tensorial coe�cient K00 such that
ẋ00 = K00

· x00. The rate of change with path length of K
then being K̇ = (K00

�K)/��0.
But this rotation is an unnecessary complication since

both of the vectors r0 � r00 and ṙ0 � ṙ00 are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��0. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��0 simply by projecting r0 and ṙ0 and ṙ00 onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)

ẋ0
� ẋ0

0 = ẋ+ (rx � ẋ@z)ñ(x)���rxñ(0)��0. (D9)

Making a first first order Taylor expansion rxñ(x) =
rxñ(0)+(x ·rx)rxñ(0), and realising that, at first order in
displacement, ẋ@zñ(x) = ẋ@zñ(0) since ẋ is of first order,
this is

ẋ0
� ẋ0

0 = x · [K+ (rxrxñ�rxñrxñ�K@zñ)��] (D10)

where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��0.

Writing the LHS as ẋ0
� ẋ0

0 = K0
· x0 and substituting

x = (I+K��)�1
·x0 from (D8) on the RHS and linearising

in ��, gives

K0 = K+ [(rxrx �K@z)ñ�rxñrxñ�K ·K]�� (D11)

or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation

K̇ = (rxrx �K@z)ñ�rxñrxñ�K ·K . (D12)

The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}

where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}

it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2

⌘ Tr(⌃ ·⌃)/2 = �|⌃|.
Taking the trace and trace-free projections of (D12)

yields the coupled transport equations

✓̇ =

✓
r?

2

2
� ✓@�

◆
ñ� |r?ñ|

2
/2� ✓

2
� ⌃2 (D13)

⌃̇ = ({r?r?}�⌃@�)ñ� {r?ñr?ñ}� 2✓⌃ (D14)

where we are now using r?
2 to denote the transverse Lapla-

cian r
2
x on the guiding ray (this is not the same as the dot

product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @� to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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component of the displacement of the end of the ray parallel
to the z-axis:

�r2 = �4ẑ

�0Z

0

d� (�0 � �)rx� ·

�Z

0

d�
0 rx�

0 (C17)

which has a non-vanishing dot product with the unperturbed
direction, so the squared distance reached is

|r|2 = �
2
0 � 8�0

�0Z

0

d� (�0 � �)rx� ·

�Z

0

d�
0 rx�

0

+ 4

�0Z

0

d� (�0 � �)rx� ·

�0Z

0

d�
0 (�0 � �

0)rx�
0

(C18)

with expectation value

h|r|2i = �
2
0 � 2

�0Z

0

d� �(�0 � �)J (C19)

which agrees with (A28). Note that this contains the lensing
kernel, so nearby lenses do not contribute.

Resolving the di↵erence between the inverse amplifica-
tion of MS97 and that obtained here is much more compli-
cated. What one has to do is develop the 2nd order expres-
sion for the end-point of a ray with direction at the observer
ẑ+⇥ and then di↵erentiate with respect to ⇥. We shall not
pursue that analysis here.

APPENDIX D: OPTICAL SCALARS AND THE
FOCUSING THEOREM

Here we consider the mean inverse magnification from the
perspective of optical scalars – the rates of expansion, shear
and possibly rotation of a bundle of light rays that appear
in Raychaudhuri’s equation. This formalism was originally
developed by Sachs (1961) in the context of propagation of
gravitational radiation, but it applies for any massless field
in the geometric optics limit. The optical scalar transport
equations (see Schneider, Ehlers & Falco 1992, Narlikar 2010
for derivations) are particularly important in the present
context since, as we have discussed, they are the basis for the
‘focusing theorem’ (Seitz, Schneider & Ehlers 1994), which
appears to show that inhomogeneities cause systematic fo-
cusing of beams of light, and which underlies the claims of
Clarkson et al. 2012 and CUMD14. Our goals here are to
provide a check on the analysis in the main text; to show
that there is no subtle relativistic e↵ect hidden in these equa-
tions; and to elucidate the meaning of the focusing equation.

We first develop the optical scalar transport equations
in the form appropriate for calculating distances and beam
areas given some statistical prescription for the metric fluc-
tuations as a function of background coordinates. We then
solve these perturbatively, up to second order in the ampli-
tude of the metric fluctuations and compare with the results
obtained in the main text.

D1 The optical scalar equations in the weak field
limit

As discussed in §A1, light rays propagating through a per-
turbed FRW background with statistically isotropic metric

fluctuations are exactly equivalent to optics in a medium
with refractive index n(r) and obey

r̈ = r?ñ (D1)

where ñ ⌘ lnn and r? ⌘ r � ṙ(ṙ · r) is the derivative
in the direction perpendicular to ṙ. In terms of the metric
(A1) n = [(1 � 2�(r)/c2)/(1 + 2�(r)/c2)]1/2 with r being
conformal background coordinates, and dot being derivative
with respect to path length in these coordinates so |ṙ| = 1.

The optical scalar equations are a set of coupled non-
linear di↵erential equations that describe the evolution of
the rate of expansion, the vorticity and the rate of shear of
a bundle of rays (here we are interested here in a bundle of
rays that left the observer, propagating backward in time,
within a circular cone of infinitesimal solid angle d⌦). These
equations are of interest here because the rate of expansion
can be integrated to give the area of the beam.

At some point � along the central (or ‘guiding’) ray
(which we denote by subscript 0), and as illustrated in Fig-
ure D1, we can erect background spatial coordinates such
that the z-axis points along the direction of the central
ray, i.e. ṙ0 = ẑ, and define the 2-D orthogonal coordinates
x = {x1, x2} on the plane orthogonal to be x ⌘ r� ẑ(ẑ · r).
We set the origin of coordinates at the location of the central
ray: x0 = 0.

Now consider a collection of neighbouring rays whose
directions ṙ vary smoothly on the surface perpendicular to
the central ray, so for infinitesimal displacements x they have
orthogonal ‘velocity’ ẋ = ṙ � ẑ(ẑ · ṙ) = K · x where K is a
2⇥2 matrix that we shall refer to as the ‘optical tensor’, and
which is the derivative of the orthogonal ray velocity with
respect to the orthogonal coordinates. Our first goal is to
obtain a first order di↵erential equation for how K changes
with path length along the beam.

D1.1 The optical tensor transport equation

At linear order in x the ray directions are ṙ = ẑ+ ẋ and the
perpendicular gradient operator is

r? = rx � ẋ@z � ẑ(ẋ ·rx). (D2)

Let us now use this in the geodesic equation to propagate
the guiding ray forward by a path length corresponding to a
given interval of optical path (or phase �� for a monochro-
matic source): ��0 = ��/n(0). To first order in ��0 the
new position, which we denote by a prime, is

r00 = 0+ ṙ0��0 = ẑ��0 (D3)

while the ray direction will be

ṙ00 = ẑ+ r̈0��0 = ẑ+rxñ(0)��0. (D4)

As the direction has changed we have a new plane perpen-
dicular to the guiding ray, or equivalently tangent to the new
wavefront, that is tilted with respect to the plane z = ��0.
The equation of this plane is

z
0
���0 = h(x) = ���0rxñ(0) · x. (D5)

Now consider a neighbouring ray that pierces the sur-
face z = 0 at x and propagate this to the new tangent
plane. To first order in ��0 and x this requires a path length
�� = ��0(1� x ·rxñ(x)) – this can also be obtained from
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component of the displacement of the end of the ray parallel
to the z-axis:

�r2 = �4ẑ

�0Z

0

d� (�0 � �)rx� ·

�Z

0

d�
0 rx�

0 (C17)

which has a non-vanishing dot product with the unperturbed
direction, so the squared distance reached is

|r|2 = �
2
0 � 8�0

�0Z

0

d� (�0 � �)rx� ·

�Z

0

d�
0 rx�

0

+ 4

�0Z

0

d� (�0 � �)rx� ·

�0Z

0

d�
0 (�0 � �

0)rx�
0

(C18)

with expectation value

h|r|2i = �
2
0 � 2

�0Z

0

d� �(�0 � �)J (C19)

which agrees with (A28). Note that this contains the lensing
kernel, so nearby lenses do not contribute.

Resolving the di↵erence between the inverse amplifica-
tion of MS97 and that obtained here is much more compli-
cated. What one has to do is develop the 2nd order expres-
sion for the end-point of a ray with direction at the observer
ẑ+⇥ and then di↵erentiate with respect to ⇥. We shall not
pursue that analysis here.

APPENDIX D: OPTICAL SCALARS AND THE
FOCUSING THEOREM

Here we consider the mean inverse magnification from the
perspective of optical scalars – the rates of expansion, shear
and possibly rotation of a bundle of light rays that appear
in Raychaudhuri’s equation. This formalism was originally
developed by Sachs (1961) in the context of propagation of
gravitational radiation, but it applies for any massless field
in the geometric optics limit. The optical scalar transport
equations (see Schneider, Ehlers & Falco 1992, Narlikar 2010
for derivations) are particularly important in the present
context since, as we have discussed, they are the basis for the
‘focusing theorem’ (Seitz, Schneider & Ehlers 1994), which
appears to show that inhomogeneities cause systematic fo-
cusing of beams of light, and which underlies the claims of
Clarkson et al. 2012 and CUMD14. Our goals here are to
provide a check on the analysis in the main text; to show
that there is no subtle relativistic e↵ect hidden in these equa-
tions; and to elucidate the meaning of the focusing equation.

We first develop the optical scalar transport equations
in the form appropriate for calculating distances and beam
areas given some statistical prescription for the metric fluc-
tuations as a function of background coordinates. We then
solve these perturbatively, up to second order in the ampli-
tude of the metric fluctuations and compare with the results
obtained in the main text.

D1 The optical scalar equations in the weak field
limit

As discussed in §A1, light rays propagating through a per-
turbed FRW background with statistically isotropic metric

fluctuations are exactly equivalent to optics in a medium
with refractive index n(r) and obey

r̈ = r?ñ (D1)

where ñ ⌘ lnn and r? ⌘ r � ṙ(ṙ · r) is the derivative
in the direction perpendicular to ṙ. In terms of the metric
(A1) n = [(1 � 2�(r)/c2)/(1 + 2�(r)/c2)]1/2 with r being
conformal background coordinates, and dot being derivative
with respect to path length in these coordinates so |ṙ| = 1.

The optical scalar equations are a set of coupled non-
linear di↵erential equations that describe the evolution of
the rate of expansion, the vorticity and the rate of shear of
a bundle of rays (here we are interested here in a bundle of
rays that left the observer, propagating backward in time,
within a circular cone of infinitesimal solid angle d⌦). These
equations are of interest here because the rate of expansion
can be integrated to give the area of the beam.

At some point � along the central (or ‘guiding’) ray
(which we denote by subscript 0), and as illustrated in Fig-
ure D1, we can erect background spatial coordinates such
that the z-axis points along the direction of the central
ray, i.e. ṙ0 = ẑ, and define the 2-D orthogonal coordinates
x = {x1, x2} on the plane orthogonal to be x ⌘ r� ẑ(ẑ · r).
We set the origin of coordinates at the location of the central
ray: x0 = 0.

Now consider a collection of neighbouring rays whose
directions ṙ vary smoothly on the surface perpendicular to
the central ray, so for infinitesimal displacements x they have
orthogonal ‘velocity’ ẋ = ṙ � ẑ(ẑ · ṙ) = K · x where K is a
2⇥2 matrix that we shall refer to as the ‘optical tensor’, and
which is the derivative of the orthogonal ray velocity with
respect to the orthogonal coordinates. Our first goal is to
obtain a first order di↵erential equation for how K changes
with path length along the beam.

D1.1 The optical tensor transport equation

At linear order in x the ray directions are ṙ = ẑ+ ẋ and the
perpendicular gradient operator is

r? = rx � ẋ@z � ẑ(ẋ ·rx). (D2)

Let us now use this in the geodesic equation to propagate
the guiding ray forward by a path length corresponding to a
given interval of optical path (or phase �� for a monochro-
matic source): ��0 = ��/n(0). To first order in ��0 the
new position, which we denote by a prime, is

r00 = 0+ ṙ0��0 = ẑ��0 (D3)

while the ray direction will be

ṙ00 = ẑ+ r̈0��0 = ẑ+rxñ(0)��0. (D4)

As the direction has changed we have a new plane perpen-
dicular to the guiding ray, or equivalently tangent to the new
wavefront, that is tilted with respect to the plane z = ��0.
The equation of this plane is

z
0
���0 = h(x) = ���0rxñ(0) · x. (D5)

Now consider a neighbouring ray that pierces the sur-
face z = 0 at x and propagate this to the new tangent
plane. To first order in ��0 and x this requires a path length
�� = ��0(1� x ·rxñ(x)) – this can also be obtained from
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Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)

ṙ0 = ẑ+ ẋ+ (rx � ẋ@z � ẑ(ẋ ·rx))ñ�� (D7)

One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ00) = R(ṙ0�ṙ00).
This will be a linear function of the rotated displacement
x00 = R(r0 � r00) with tensorial coe�cient K00 such that
ẋ00 = K00

· x00. The rate of change with path length of K
then being K̇ = (K00

�K)/��0.
But this rotation is an unnecessary complication since

both of the vectors r0 � r00 and ṙ0 � ṙ00 are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��0. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��0 simply by projecting r0 and ṙ0 and ṙ00 onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)

ẋ0
� ẋ0

0 = ẋ+ (rx � ẋ@z)ñ(x)���rxñ(0)��0. (D9)

Making a first first order Taylor expansion rxñ(x) =
rxñ(0)+(x ·rx)rxñ(0), and realising that, at first order in
displacement, ẋ@zñ(x) = ẋ@zñ(0) since ẋ is of first order,
this is

ẋ0
� ẋ0

0 = x · [K+ (rxrxñ�rxñrxñ�K@zñ)��] (D10)

where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��0.

Writing the LHS as ẋ0
� ẋ0

0 = K0
· x0 and substituting

x = (I+K��)�1
·x0 from (D8) on the RHS and linearising

in ��, gives

K0 = K+ [(rxrx �K@z)ñ�rxñrxñ�K ·K]�� (D11)

or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation

K̇ = (rxrx �K@z)ñ�rxñrxñ�K ·K . (D12)

The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}

where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}

it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2

⌘ Tr(⌃ ·⌃)/2 = �|⌃|.
Taking the trace and trace-free projections of (D12)

yields the coupled transport equations

✓̇ =

✓
r?

2

2
� ✓@�

◆
ñ� |r?ñ|

2
/2� ✓

2
� ⌃2 (D13)

⌃̇ = ({r?r?}�⌃@�)ñ� {r?ñr?ñ}� 2✓⌃ (D14)

where we are now using r?
2 to denote the transverse Lapla-

cian r
2
x on the guiding ray (this is not the same as the dot

product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @� to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
ṙ = dr/d� (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the
wave-fronts, the transverse components of the direction of rays are
the 2D gradient of the wave-front displacement from the tangent
plane. It follows that the optical tensor is also the Hessian (2nd
spatial derivative) matrix for this displacement.

�� = ��/n(x). The advanced position and direction will
be

r0 = x+ ṙ�� = x+ (ẑ+ ẋ)�� (D6)

ṙ0 = ẑ+ ẋ+ (rx � ẋ@z � ẑ(ẋ ·rx))ñ�� (D7)

One path forward at this point would be to apply ro-
tations into the local coordinate system defined by the new
tangent plane to obtain the di↵erence in direction between
this ray and the guiding ray ẋ00 = R(ṙ0)�R(ṙ00) = R(ṙ0�ṙ00).
This will be a linear function of the rotated displacement
x00 = R(r0 � r00) with tensorial coe�cient K00 such that
ẋ00 = K00

· x00. The rate of change with path length of K
then being K̇ = (K00

�K)/��0.
But this rotation is an unnecessary complication since

both of the vectors r0 � r00 and ṙ0 � ṙ00 are almost perpendic-
ular to the original (unrotated) z-axis, so they only change
quadratically with the angle. And the angle is first order in
��0. So the vectors ẋ00 and x00 can be obtained at first or-
der in ��0 simply by projecting r0 and ṙ0 and ṙ00 onto the
original z = 0 surface to obtain x0 = r0 � ẑ(ẑ · r0) and so on.

The transported transverse position and velocity are

x0 = x+ ẋ�� = (I+K��) · x (D8)

ẋ0
� ẋ0

0 = ẋ+ (rx � ẋ@z)ñ(x)���rxñ(0)��0. (D9)

Making a first first order Taylor expansion rxñ(x) =
rxñ(0)+(x ·rx)rxñ(0), and realising that, at first order in
displacement, ẋ@zñ(x) = ẋ@zñ(0) since ẋ is of first order,
this is

ẋ0
� ẋ0

0 = x · [K+ (rxrxñ�rxñrxñ�K@zñ)��] (D10)

where the penultimate term, which like the last, is non-linear
in the metric fluctuations, comes from the first order (in x
and ñ) di↵erence between �� and ��0.

Writing the LHS as ẋ0
� ẋ0

0 = K0
· x0 and substituting

x = (I+K��)�1
·x0 from (D8) on the RHS and linearising

in ��, gives

K0 = K+ [(rxrx �K@z)ñ�rxñrxñ�K ·K]�� (D11)

or equivalently, with K0 = K + K̇��, we have the optical
tensor transport equation

K̇ = (rxrx �K@z)ñ�rxñrxñ�K ·K . (D12)

The linear spatial derivative operator in the first term
has a simple physical interpretation; it gives the second
derivative of ñ on the curved wavefront with respect to the
tangent plane coordinates. The transport equation (D12)
says that changes in K are driven by any transverse gradi-
ents of the refractive index on the wavefront surface that the
beam encounters, which makes sense, but there is also the
non-linear term �K · K which ‘drives’ changes in K even
in the absence of refractive index variations. This also has
a simple explanation; downstream of a refractive index fluc-
tuation the ray directions are unchanging, but their trans-
verse positions evolve according to (D8), so the gradient of
the fixed transverse velocity with respect to the evolving x0

coordinates must change.

D1.2 Optical scalar transport equations

The ‘optical scalar’ transport equations (Sachs 1961) are ob-
tained by decomposing the optical tensor into the expansion
rate ✓ = Tr(K)/2 and the trace-free rate of shear ⌃ = {K}

where the curly braces around a matrix indicates the trace
free projection: {M} ⌘ M � ITr(M)/2 (so ⌃ = K � ✓I).
Now for any trace-free 2 ⇥ 2 matrix N = {{a, b}, {c,�a}}

it is easy to see that N ·N = �|N|I, from which it follows
that K ·K = (✓I+⌃) · (✓I+⌃) = (✓2 +⌃2)I+ 2✓⌃ where
we have defined ⌃2

⌘ Tr(⌃ ·⌃)/2 = �|⌃|.
Taking the trace and trace-free projections of (D12)

yields the coupled transport equations

✓̇ =

✓
r?

2

2
� ✓@�

◆
ñ� |r?ñ|

2
/2� ✓

2
� ⌃2 (D13)

⌃̇ = ({r?r?}�⌃@�)ñ� {r?ñr?ñ}� 2✓⌃ (D14)

where we are now using r?
2 to denote the transverse Lapla-

cian r
2
x on the guiding ray (this is not the same as the dot

product the operator in (D2) with itself which, containing
ẋ, is position dependent) and @� to denote derivative with
respect to position along the guiding ray. The rate of shear
tensor ⌃ being trace-free has three independent components
which can be further decomposed to a 2-component shear
that is sometimes represented as a complex number and a
vorticity. We shall not use that decomposition and will just
work with ⌃ as a tensor. But separating the expansion rate
✓ is useful, since unlike ⌃ it is non-vanishing in the unper-
turbed universe.
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The form of (D13) & (D14) is a little di↵erent to e.g.
equations (6.6) of Blandford & Narayan (1986) which have
the linear 2nd derivative terms and the terms involving ✓

2,
⌃2 and ✓⌃, but are missing the other non-linear deriva-
tive terms. As we discuss shortly, these di↵erences arise in
part because the spatial derivatives here are with respect to
conformal background coordinates rather than local proper
coordinates; using the latter eliminates the derivative along
the line of sight @�, but we are still left with the terms in-
volving the square of the transverse gradient. It is certainly
the case that, for lensing by random structures, these terms
are smaller than both the linear 2nd derivative terms and
the terms involving products of the cumulative rate of shear
and expansion, but they still need to be kept here. If we ig-
nore these terms we find that there is a contribution to the
mean fractional area perturbation on the order �

2(�/L)2.
This is smaller than the claims by e.g. CUMD14, which are
h�Ai/A0 ⇠ �

2(�/L)3, but larger than the correct result
which is ⇠ �

2
�/L.

Starting at some initial point on the central ray, and
with some choice of orientation of the initial orthogonal coor-
dinate system, then for a given log refractive index field ñ(r)
one could integrate these equations, along with the geodesic
equation to track the motion of the guiding centre, to trans-
port ✓ and ⌃ along the ray.1

If the refractive index has no spatial gradients, equa-
tions (D13) & (D14) admit a solution ✓ = 1/� and ⌃ = 0.
This is the appropriate initial condition for a narrow bun-
dle of rays that leave the observer, and is the zeroth order
solution about which we will develop our perturbative anal-
ysis. Note that in the case of an observer at the centre of
a spherically symmetric ‘lens’ with ñ(r) = ñ(r) this will
still be a solution. This is required by symmetry, and can be
confirmed by calculation since for any spherically symmetric
function f(r =

p
z2 + |x|2) it is easily shown that r2

xf eval-
uated at x = 0 is just 2(df/dr)/r so the transverse Laplacian
of ñ in (D13) is cancelled by the longitudinal gradient term
�2✓@�ñ = �2��1

@�ñ.
The reason that these equations are of interest to us is

that, according to (D8), the area of the bundle evolves as
A

0 = A|I+K��| = A(1+Tr(K)��+ . . .) = A(1+ 2✓��+
. . .), where . . . indicates terms of higher than 1st order in
��. Thus ✓ = Ȧ/2A = Ḋ/D where D ⌘

p
A, which is why

✓ is called the expansion rate. Note that we are justified
in calculating the first order change in the area using the
projected, rather than rotated, coordinates here since the
di↵erence in the areas is second order.

The solution of Ȧ/2A = ✓(�) = �
�1 +�✓(�) is

A = ⌦�2 exp

0

@2

�Z

0

d�
0 �✓(�0)

1

A (D15)

where ⌦ is a constant of integration (which has an obvious

1 There is a slight subtlety here in that one needs to keep track
of the rotation of the perpendicular coordinate system as the
central ray direction changes. The coordinate system we have
used here is not tied to any neighbouring rays. Instead, the new
coordinate axes {x̂0

1, x̂
0
2}, viewed as 3-vectors in r-space, are, after

propagating a distance ��, obtained from the unprimed ones
by applying a rotation about the axis that is the cross product
ṙ⇥ (��r?ñ). This will not concern us here, however.

interpretation as the solid angle of the beam at the source or
observer) and where �✓ must be obtained by solving (D13)
& (D14). We will presently do this by means of expansion up
to second order in the assumed small refractive index fluc-
tuations. But first we make connection with the, arguably
more elegant, relativistic treatment and discuss the inter-
pretation of the ‘focusing theorem’.

D2 The focusing theorem

The rate of change with distance of Ḋ/D is ✓̇ = D̈/D �

(Ḋ/D)2 = D̈/D � ✓
2 so, according to (D13),

D̈/D =

✓
r?

2

2
� ✓@�

◆
ñ� |r?ñ|

2
/2� ⌃2

. (D16)

This appears to di↵er from the usual expression (e.g. Schnei-
der, Ehlers & Falco 1992)

D̈/D = �R↵�k
↵
k
�
/2� ⌃2 (D17)

where R↵� is the Ricci tensor and k
↵ is the guiding ray 4-

vector. In particular, the rate of expansion ✓ does not appear
in (D17). The di↵erence is partly because we are working
in terms of the metric fluctuations – assumed to take the
weak-field form – and in part because our D is a distance
in conformal background coordinate units whereas in (D17)
the distance is in proper distance units. In the weak-field
approximation grr = 1 � 2�, but n

2 = (1 � 2�)/(1 + 2�)
so at lowest order in the metric fluctuations grr = n and
physical distances are related to background distances by
d�

⇤ = n
1/2

d�, so partial derivatives with respect to physi-
cal coordinates are rx⇤ = n

�1/2rx and @�⇤ = n
�1/2

@�. In
terms of D⇤ = n

1/2
D (D16) becomes

D̈
⇤

D⇤ =
1
2
r

2
⇤n�

3
4n

|rx⇤n|
2
� ⌃2 (D18)

where r
2
⇤n is the 3D Laplacian operator in physical coor-

dinates r
2
⇤ = rx⇤2 + @

2
�⇤ and where, as in (D17), the rate

of expansion no longer appears. Here dot denotes derivative
with respect to background distance along the ray.

Equation (D17) is the basis for the focusing theorem

(Seitz, Schneider & Ehlers 1994): since both terms on the
RHS are negative for any sensible equation of state for mat-
ter, then, rather generally, D̈/D < 0. The first term in (D17)
describes the local e↵ect of matter within the beam while
the second term is the integrated e↵ect of tidal fields from
matter outside the beam, or Weyl curvature, along the path
of the beam. The focusing equation says that the latter can
only act to enhance the local focusing by positive density
matter and that, as compared to rays in Minkowski space-
time where D̈ = 0 beams are always focused (at least up
until caustic formation). This result seems also to be in ac-
cord with calculations based on the lens equation (Schneider
1984; Ehlers & Schneider 1986; Seitz & Schneider 1992) that
any lens will give rise to at least one image that is magnified.
See Schneider, Ehlers & Falco (1992) and Narlikar (2010) for
further discussion.

In the cosmological context, the width of an unper-
turbed beam in conformal (or co-moving) coordinate is
D =

p
⌦�, so D̈ = 0. The local tidal focusing, in this

context, is caused by the density fluctuations around the
mean value, which averages to zero. More interesting is the

c� 0000 RAS, MNRAS 000, 000–000



Part I: Concluding comments....

• The problem of how lensing by cosmic structure affects the mean 
distance-redshift relation (or the mean area of a surface of constant 
redshift) goes back for at least 50 years
• Interesting problem....
• many people played with it...
• potentially important for "precision cosmology" with SN1a and CMB

• A conflict arose in the '80s between Weinberg's flux conservation 
argument and the contrary indications from the focussing theorem

• This remained unresolved and resurfaced recently in results of relativistic 
2nd order perturbation theory.



Part I: Concluding comments continued...
• John Peacock and I have reconciled the conflicts 
• We support Weinberg:

• lensing affects individual source flux densities in a random way
• but averaged flux density of sources is almost exactly unperturbed

• and pay tribute to Kibble and Lieu
• emphasised the distinction between source and direction averaging

• Our main results:
• Relativistic studies have misinterpreted statistical biases.
• there is a bias in the area of constant z or photosphere surfaces - but it is 

very, very small ~ 10-6

• we have shown that the celebrated "focusing theorem", despite its name, 
does not imply any intrinsic tendency for bundles of rays to be focused 
as they wend their wiggly way through the lumpy cosmos

• Implication: conventional methods for analysing the CMB & SN1a 
(mostly) are valid.

• ΛCDM lives to fight another day!



Part I:Backreaction issues
• Comments on Raychaudhuri:

• Powerful tool, but dangerous

• The 2nd order terms (shear^2 etc) depend on the “measure”

• Equation for D = sqrt(A) -> focussing theorem

• Equation for A -> non-focussing theorem

• Same is true for time-like geodesics

• Different “backreaction” terms (Buchert’s Qs) for different 
measures.

• Need to carefully choose the appropriate measure (here A)

• Setting up the physical model:

• For inflation need to model metric as background + perturbations

• Different result if you model curvature 



• Einstein-Straus '45 

• "What is the effect of 
expansion of space" 

• -> Swiss-cheese 

• Fully non-linear 

• proper mass 
perturbation does not 
average to zero 

• Need to model metric 
perturbations as zero 
mean process



2) Bias in H0 from 2nd order pertn theory



Scale dependence of cosmological backreaction
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Because of the noncommutation of spatial averaging and temporal evolution, inhomogeneities and

anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological

backreaction mechanism. We study the backreaction effect as a function of averaging scale in a

perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which

10% effects show up from averaging at different orders. The dominant contribution comes from the

averaged spatial curvature, observable up to scales of!200 Mpc. The cosmic variance of the local Hubble

rate is 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from

Newtonian cosmology and Hubble Space Telescope Key Project data.
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Various cosmological observations, interpreted in the
framework of spatially flat, homogeneous, and isotropic
cosmogonies, have now confirmed the accelerated expan-
sion of the Universe. The most direct evidence comes from
the study of supernova (SN) of type Ia [1]. Many attempts
have been proposed to understand this mystery, e.g.,
dark energy in the form of a cosmological constant,
quintessence field or modification of gravity. However,
these suggestions always rely on the homogeneity and
isotropy of the cosmic medium, which are rather rough
approximations.

The Universe hosts enormous structures. In our neigh-
borhood, there seem to exist two voids, both 35 to 70 Mpc
across, associated with the so-called velocity anomaly [2],
a large filament known as the Sloan great wall about
400 Mpc long [3] and the Shapely supercluster with a
core diameter of 40 Mpc at a distance of !200 Mpc
from us [4]. Furthermore, based on the Hubble Space
Telescope (HST) Key Project data [5], evidence for a
significant anisotropy in the local Hubble expansion at
distances of !100 Mpc was found [6], and an anisotropy
of SN Ia Hubble diagrams extending to larger distances has
been reported recently [7]. Therefore, spatial homogeneity
and isotropy seem to be valid only on scales larger than
!100 Mpc [8], and effects of local inhomogeneities are
worthy of investigation. More specifically, observables
from within a few 100 Mpc must be revisited critically.
The most fundamental of those are cosmic distances and
the Hubble constant H0.

In this paper, we study the averaging of the inhomoge-
neous and anisotropic Universe over a local domain in
space-time. We stick to the idea of cosmological inflation,
assuming that the Universe approaches homogeneity and
isotropy at scales as large as the Hubble distance.

Many cosmological observables are averaged quantities.
For instance, the matter power spectrum is a Fourier trans-
form and thus a volume average weighted by a factor eik"x.
Another very important example is the idealized measure-
ment of H0 [9]. One picks N standard candles in a local
volume V (e.g., SN Ia in the Milky Way’s neighborhood
out to !100 Mpc), measures their luminosity distances di
and recession velocities vi ¼ czi (zi being the redshift of
each candle) and performs the average H0 $ 1

N

PN
i¼1

vi

di
. In

the limit of a very big sample, it turns into a volume
average H0 ¼ 1

V

R
v
d dV.

Cosmological observations are made on the past light
cone, so one should average over a light-cone volume.
However, for objects at z % 1, spatial averaging on a
constant-time-hypersurface is a good approximation, as
the Universe does not change significantly on the temporal
scale involved.
Because of the nonlinearity of the Einstein equations,

spatial averaging and temporal evolution do not commute.
Hence, inhomogeneities and anisotropies affect the evolu-
tion of the averaged Universe via the so-called ‘‘backreac-
tion mechanism’’ [10– 16]. Below, we utilize Buchert’s
averaging method [12] to estimate the order of magnitude
of backreaction effects and study the signatures of averag-
ing from the local measurement of H0.
Buchert’s setup is well adapted to the situation of a real

observer, if we are allowed to neglect the difference be-
tween baryons and cold dark matter (CDM). On scales
* 10 Mpc, baryon pressure is insignificant, and a real
observer comoves with matter, uses her own clock and
regards space to be time-orthogonal. These conditions
define a comoving synchronous coordinate system. There
are no primordial vector perturbations from cosmological
inflation, so we assume the Universe to be irrotational. As
we are concerned about the present Universe, radiation is
thus neglected. Moreover, the cosmological constant is
also supposed to vanish, as we ask whether averaging could
mimic a component of dark energy. Following Buchert, we
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k0 ¼ 0:002=Mpc and spectral index ns ¼ 0:960 and use
H0 ¼ 72 km=s=Mpc [20]. We see that the theoretical band
matches the experimental data well, without any fit pa-
rameter in the panel. Moreover, we see from Fig. 2 that the
value of !H is positive within "100 Mpc. This is consis-
tent with the result in a recent paper [24] that we are
located in a 200–300 Mpc underdense void, which is
expanding faster than the global Hubble rate.

Before we can claim that we have observed the expected
1=r2 behavior in Eq. (18) and thus the evidence for cos-
mological backreaction, we must make sure that statistical
noise cannot account for it. In the case of a perfectly
homogeneous coverage of the averaged domain with stan-
dard candles, we would expect a 1=r3=2 behavior. In Fig. 2,
we show the statistical noise for the actual data set
(1=ðPk

i¼1 giÞ1=2), which is smaller than our result
Eq. (18). It turns out that the sampling noise for this small
data set is still too large to claim that the inhomogeneity of
the Universe can be detected in the relative fluctuation of
the Hubble rate observed by the HST Key Project.
However, it is fully consistent with our theoretical expec-
tations. Actually the fluctuation !H appears to be smaller

than expected, and one might wonder why that is so. From
the theoretical expectation plotted in Fig. 2, we find that at
"40ð60ÞMpc, the value ofHD differs from its global value
72 km=s=Mpc (WMAP5) by about 10% (5%), whereas the
expected variance for a perfectly homogeneous and iso-
tropic Universe is 8% (2%).
A similar analysis of the Hubble diagram was pioneered

in Refs. [25–28], in which the velocity field of the local
Universe and its influence on the correlated fluctuations in
luminosity distance and the Hubble rate was analyzed. Two
essential differences to this work are that our analysis
includes effects to higher orders and we study the scale
dependence of the averaged observables. Although the
relative fluctuation of the Hubble rate was not explicitly
analyzed in Refs. [25–27], it seems to us that our results are
consistent with those findings.
To summarize, we argue that cosmological averaging

(backreaction) gives rise to observable effects up to scales
of "200 Mpc. However, it is not sufficient to explain the
observed accelerated expansion at this point.
We find a hierarchy of backreaction effects. The aver-

aged spatial curvature hRiD leads to 10% (1%) effects up
to "80ð240ÞMpc in a dust model with h¼ 0:7. Below
"40 Mpc, the cosmic variance of the Hubble rate is larger
than 10%, which coincides with the estimate from the
effect of peculiar motions in Newtonian setup. Within
"30 Mpc, the kinematical backreaction hQiD, due to sec-
ond order perturbations caused by local inhomogeneities
and anisotropies, enters the game. Cosmological backreac-
tion may put some of the steps on the cosmological dis-
tance ladder in question, as they are deeply in the domain
of large backreaction, i.e., large fluctuations among small
averaged volumes.
Our findings call for revisiting local observations, like

galaxy redshift surveys, in terms of possible backreaction
signatures. The large scale physics of primordial CMB
anisotropies is not affected. However, this statement cannot
be made for secondary effects, e.g., the late integrated
Sachs-Wolfe effect.

We are grateful to Thomas Buchert, Hengtong Ding,
Stefan Fröhlich, Florian Kühnel, Julien Larena, Megan
McClure, Chuan Miao, Aseem Paranjape, Aleksandar
Rakić, Marina Seikel, Tejinder P. Singh, Glenn Starkman,
and David L. Wiltshire for discussions. The work of N. L.
is supported by the DFG under Grant No. GRK 881.
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FIG. 2 (color online). Relative fluctuation of the Hubble rate
from cosmological backreaction and its cosmic variance band
(thick lines) compared to the empirical mean and variance of !H

obtained from the HST Key Project data [5] as a function of
averaging radius. The thin line shows the ensemble mean of !H .
The band enclosed by the thick lines indicates the effect of the
inhomogeneities ( / 1=r2), and the dashed lines are the effect
from sampling with given measurement errors in an otherwise
perfectly homogeneous Universe.
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k0 ¼ 0:002=Mpc and spectral index ns ¼ 0:960 and use
H0 ¼ 72 km=s=Mpc [20]. We see that the theoretical band
matches the experimental data well, without any fit pa-
rameter in the panel. Moreover, we see from Fig. 2 that the
value of !H is positive within "100 Mpc. This is consis-
tent with the result in a recent paper [24] that we are
located in a 200–300 Mpc underdense void, which is
expanding faster than the global Hubble rate.

Before we can claim that we have observed the expected
1=r2 behavior in Eq. (18) and thus the evidence for cos-
mological backreaction, we must make sure that statistical
noise cannot account for it. In the case of a perfectly
homogeneous coverage of the averaged domain with stan-
dard candles, we would expect a 1=r3=2 behavior. In Fig. 2,
we show the statistical noise for the actual data set
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i¼1 giÞ1=2), which is smaller than our result
Eq. (18). It turns out that the sampling noise for this small
data set is still too large to claim that the inhomogeneity of
the Universe can be detected in the relative fluctuation of
the Hubble rate observed by the HST Key Project.
However, it is fully consistent with our theoretical expec-
tations. Actually the fluctuation !H appears to be smaller

than expected, and one might wonder why that is so. From
the theoretical expectation plotted in Fig. 2, we find that at
"40ð60ÞMpc, the value ofHD differs from its global value
72 km=s=Mpc (WMAP5) by about 10% (5%), whereas the
expected variance for a perfectly homogeneous and iso-
tropic Universe is 8% (2%).
A similar analysis of the Hubble diagram was pioneered

in Refs. [25–28], in which the velocity field of the local
Universe and its influence on the correlated fluctuations in
luminosity distance and the Hubble rate was analyzed. Two
essential differences to this work are that our analysis
includes effects to higher orders and we study the scale
dependence of the averaged observables. Although the
relative fluctuation of the Hubble rate was not explicitly
analyzed in Refs. [25–27], it seems to us that our results are
consistent with those findings.
To summarize, we argue that cosmological averaging

(backreaction) gives rise to observable effects up to scales
of "200 Mpc. However, it is not sufficient to explain the
observed accelerated expansion at this point.
We find a hierarchy of backreaction effects. The aver-

aged spatial curvature hRiD leads to 10% (1%) effects up
to "80ð240ÞMpc in a dust model with h¼ 0:7. Below
"40 Mpc, the cosmic variance of the Hubble rate is larger
than 10%, which coincides with the estimate from the
effect of peculiar motions in Newtonian setup. Within
"30 Mpc, the kinematical backreaction hQiD, due to sec-
ond order perturbations caused by local inhomogeneities
and anisotropies, enters the game. Cosmological backreac-
tion may put some of the steps on the cosmological dis-
tance ladder in question, as they are deeply in the domain
of large backreaction, i.e., large fluctuations among small
averaged volumes.
Our findings call for revisiting local observations, like

galaxy redshift surveys, in terms of possible backreaction
signatures. The large scale physics of primordial CMB
anisotropies is not affected. However, this statement cannot
be made for secondary effects, e.g., the late integrated
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Chris Clarkson,* Kishore Ananda,† and Julien Larena‡

Cosmology & Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town,
Rondebosch 7701, Cape Town, South Africa

(Received 4 August 2009; published 23 October 2009)

We investigate the effect that the average backreaction of structure formation has on the dynamics of

the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully

consistent up to second order in a perturbative expansion about a flat Friedmann background, including a

cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of

this kind. We identify an intrinsic homogeneity scale that arises from the averaging procedure, beyond

which a residual offset remains in the expansion rate and deceleration parameter. In the case of the

deceleration parameter, this can lead to a quite large increase in the value, and may therefore have

important ramifications for dark energy measurements, even if the underlying nature of dark energy is a

cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and

deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the

cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to

percent precision overly optimistic.
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I. INTRODUCTION

The Universe appears to be close to homogeneous and
isotropic, on average, on large scales, but it exhibits a very
clumpy distribution of matter on small scales. To account
for this structure, the standard cosmological model relies
on the separation of the geometry of spacetime into a
perfectly homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) background describ-
ing the large-scale properties of the Universe, such as the
expansion rate, and small fluctuations around this back-
ground solution. This provides a straightforward perturba-
tive treatment of the growth of structure under the influence
of gravitation. The explicit construction of the background
by a smoothing or averaging procedure applied to the
clumpy Universe is often ignored, and the background
appears as an artificial mathematical object used to per-
form the calculations of gauge invariant quantities charac-
terizing the physical properties of the clumpy Universe.

The essence of this ‘‘averaging problem’’ comes when
we try to match the late time Universe today, which is full
of structure, to the early time Universe, which is not. At the
end of inflation we are left with a universe with curvature
characterized by some constant kinf ( ¼ 0;"1 in some
units), and a cosmological constant, !inf , which are fixed
for all time (and might be zero), and perturbations which
are of a tiny amplitude and well outside the Hubble radius;
there is no averaging problem at this time, and the idea of
background plus perturbations is very natural and simple to
define. Fast forward to today, where structures are non-

linear, are inside the Hubble radius, and many have broken
away from the cosmic expansion altogether. We may still
apparently describe the Universe as FLRW plus perturba-
tions to high accuracy; that is, it is natural and seemingly
correct to define a FLRW background, but it is implicitly
assumed that this background is the same one that we are
left with at the end of inflation, in terms of kinf and !inf .
Mathematically we can follow a model from inflation to
today, but when we try to fit our models to observations to
describe our local Universe we are implicitly smoothing
over the structure, and this can contaminate what we think
our inflationary background FLRW model should be.
Indeed, it is not clear that the background smoothed model
should actually obey the field equations at all. Within the
standard paradigm, then, the averaging problem also be-
comes a fitting problem; are the background parameters we
are fitting with the CMB actually the same as those when
fitting type Ia supernovae? (See [1] for a discussion of
these issues.)
Because of the nonlinearity of the Einstein field equa-

tions, the explicit construction of a homogeneous back-
ground is far from trivial and it has been know for a long
time that the local fluctuations may influence the way the
Universe behaves on average [2]; this effect is usually
dubbed backreaction and has started to be investigated in
detail (see, e.g., [3– 26] and references therein) often as a
possible solution to the dark energy problem itself. The
problem is mathematical: if we have an inhomogeneous
matter distribution in some spacetime, and we try to cal-
culate a homogeneous ‘‘background’’ by smoothing the
matter content and calculating the new smoothed metric,
we get a different answer than if we smooth the metric
directly; this difference is usually termed backreaction in
this context.
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Abstract. The calculation of the averaged Hubble expansion rate in an averaged perturbed
Friedmann-Lemâıtre-Robertson-Walker cosmology leads to small corrections to the back-
ground value of the expansion rate, which could be important for measuring the Hubble
constant from local observations. It also predicts an intrinsic variance associated with the
finite scale of any measurement of H0, the Hubble rate today. Both the mean Hubble rate
and its variance depend on both the definition of the Hubble rate and the spatial surface on
which the average is performed. We quantitatively study different definitions of the averaged
Hubble rate encountered in the literature by consistently calculating the backreaction effect
at second order in perturbation theory, and compare the results. We employ for the first
time a recently developed gauge-invariant definition of an averaged scalar. We also discuss
the variance of the Hubble rate for the different definitions.
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Abstract. After recalling a general non-perturbative expression for the luminosity-redshift
relation holding in a recently proposed “geodesic light-cone” gauge, we show how it can
be transformed to phenomenologically more convenient gauges in which cosmological per-
turbation theory is better understood. We present, in particular, the complete result on
the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic
perturbed cosmology, assuming that appreciable vector and tensor perturbations are only
generated at second order. This relation provides a basic ingredient for the computation of
the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results
we have anticipated in a recent letter. More generally, it can be used in connection with any
physical information carried by light-like signals traveling along our past light-cone.
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Abstract. Using a recently proposed gauge invariant formulation of light-cone averaging,
together with adapted “geodesic light-cone” coordinates, we show how an “induced backreac-
tion” e↵ect emerges, in general, from correlated fluctuations in the luminosity distance and co-
variant integration measure. Considering a realistic stochastic spectrum of inhomogeneities of
primordial (inflationary) origin we find that both the induced backreaction on the luminosity-
redshift relation and the dispersion are larger than näıvely expected. On the other hand the
former, at least to leading order and in the linear perturbative regime, cannot account by it-
self for the observed e↵ects of dark energy at large-redshifts. A full second-order calculation,
or even better a reliable estimate of contributions from the non-linear regime, appears to be
necessary before firm conclusions on the correct interpretation of the data can be drawn.
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Figure 4. The distance-modulus di↵erence of eq. (6.3) is plotted for a pure CDM model (thin line),
for a CDM model including the contribution of IBR2 (dashed blue line) plus/minus the dispersion
(coloured region), and for a ⇤CDM model with ⌦⇤ = 0.73 (thick line) and ⌦⇤ = 0.1 (dashed-dot
thick line). We have used for all backreaction integrals the cut-o↵ k = 1Mpc�1.

on the correct interpretation of the data can be drawn. Also, the di↵erent behaviour of
the di↵erent backreaction contributions, at small zs and large zs, could represent an im-
portant signature to distinguish the e↵ects due to averaged inhomogeneities from the more
conventional dynamical e↵ects of homogeneous dark energy sources.

The second comment is that, although a reliable estimate of the full backreaction on
the averaged luminosity distance requires a full second-order calculation, some suitable linear
combinations of averages of di↵erent powers of dL only depend on the first-order quantity �1
(defined by the expansion of dL). As an example, one can show that the following equality
holds at second order for any value of the real parameter ↵:

⌦�
dL/dFLRWL

�↵↵� ↵
⌦
dL/dFLRWL

↵
= 1� ↵+

↵(↵� 1)

2
h�2

1
i. (6.4)

This quantity can be plotted for a given inhomogeneous model, and compared with its (de-
terministic) value in a ⇤CDM model, for various values of ↵. The result is that the two
models disagree for generic ↵, leading to the conclusion that realistic inhomogeneities added
to CDM lead to a model that can be distinguished, in principle, from the conventional ⇤CDM
scenario. In practice, however, we only have a single quantity measured by the supernovae
experiments (basically the received flux of radiation), and one cannot exclude that the two
models happen to give the same result for that particular observable.

– 23 –



JCAP06(2013)002

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Average and dispersion of the
luminosity-redshift relation in the
concordance model
I. Ben-Dayan,a M. Gasperini,b,c G. Marozzi,d,e F. Nugierf and
G. Venezianod,g,h

aDeutches Elektronen-Synchrotron DESY, Theory Group,
D-22603 Hamburg, Germany

bDipartimento di Fisica, Università di Bari,
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dCollège de France, 11 Place M. Berthelot, 75005 Paris, France
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Abstract. Starting from the luminosity-redshift relation recently given up to second or-
der in the Poisson gauge, we calculate the e↵ects of the realistic stochastic background of
perturbations of the so-called concordance model on the combined light-cone and ensemble
average of various functions of the luminosity distance, and on their variance, as functions
of redshift. We apply a gauge-invariant light-cone averaging prescription which is free from
infrared and ultraviolet divergences, making our results robust with respect to changes of
the corresponding cuto↵s. Our main conclusions, in part already anticipated in a recent
letter for the case of a perturbation spectrum computed in the linear regime, are that such
inhomogeneities not only cannot avoid the need for dark energy, but also cannot prevent,
in principle, the determination of its parameters down to an accuracy of order 10�3 � 10�5,
depending on the averaged observable and on the regime considered for the power spectrum.
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Figure 6. The fractional correction to the flux (f�, thin curves) and to the luminosity distance (fd,
thick curves), for a perturbed ⇤CDM model with ⌦⇤0 = 0.73. Unlike in figure 3, we have taken
into account the non-linear contributions to the power spectrum given by the HaloFit model of [17]
(including baryons), and we have used the following cuto↵ values: kUV = 10hMpc�1 (dashed curves)
and kUV = 30hMpc�1 (solid curves).
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Figure 7. The averaged distance modulus hµi�µM of eq. (3.6) (thick solid curve), and its dispersion
of eq. (3.9) (shaded region), for a perturbed ⇤CDM model with ⌦⇤0 = 0.73. Unlike figure 4, we
have taken into account the non-linear contributions to the power spectrum given by the HaloFit
model of [17] (including baryons), and used the cut-o↵ kUV = 30hMpc�1. The averaged results are
compared with the homogeneous values of µ predicted by unperturbed ⇤CDM models with (from
bottom to top) ⌦⇤0 = 0.68, 0.69 0.71, 0.73, 0.75, 0.77, 0.78 (dashed curves). The right panel simply
provides a zoom of the same curves, plotted in the smaller redshift range 0.5  z  2.

the distance modulus that can be inferred from SNe Ia data. Our results for the dispersion are
already implicitly contained in figure 7 but, for the sake of clarity, we have separately plotted
our value of �µ in figure 8, where the thick solid curve represents the value of �µ obtained from
eq. (3.9), and plotted as a function of z. We can see from the figure that �µ has a characteristic
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The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation

is computed to second order through a recently proposed covariant and gauge-invariant light-cone

averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences,

implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are

estimated and depend on the particular function of the luminosity distance being averaged. The energy

flux being minimally affected by perturbations at large z is proposed as the best choice for precision

estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical

errors on !"ðzÞ typically lying in the few-percent range.

DOI: 10.1103/PhysRevLett.110.021301 PACS numbers: 98.80.Es, 95.36.+x, 98.62.Py

Establishing the existence of dark energy and deter-
mining its parameters is one of the central issues in
modern cosmology. Evidence of a sizable dark-energy
component in the cosmic fluid comes from different
sources: cosmic microwave background anisotropies,
models of large-scale-structure formation and, most
directly, the luminosity-redshift relation of Type Ia super-
novae used as standard candles.

In this latter case, on which we concentrate our
attention, the analysis is usually made in the simplified
context of a homogeneous and isotropic Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) cosmology. The
issue has then been raised about whether inhomogeneities
may affect the conclusion of such a naive analysis.
Inhomogeneous models in which we occupy a privileged
position in the Universe, for instance, can mimic dark
energy (as first pointed out in Ref. [1]), but look both
unrealistic and highly fine-tuned. More interestingly, we
should address this question in the presence of stochasti-
cally isotropic and homogeneous perturbations of the kind
predicted by inflation. We present here the main ideas and
results of such a study, while its detailed derivation and
discussion are presented in Ref. [2] and in a forthcoming
paper [3].

There is by now general agreement that superhorizon
perturbations cannot mimic dark-energy effects [4]. By
contrast, the impact of subhorizon perturbations is still
unsettled [5– 7] owing to the appearance of ultraviolet diver-
gences (see Ref. [8] for the possible observational impact of
such ultraviolet divergences on the anisotropy of the
Hubble flow) while computing their ‘‘backreaction’’ on
certain classes of large-scale averages [6,7]. The possibility

that these effects may simulate a substantial fraction of dark
energy, or that they may at least play some role in the
context of near-future precision cosmology, has to be seri-
ously considered.
In order to address these issues, we have studied the

luminosity-redshift relation in a spatially flat " plus cold
dark matter ("CDM) model perturbed by a stochastic
background of inhomogeneities. The luminosity distance
dL now depends on the redshift z as well as on the angular
coordinates of the sources and must be inserted in an
appropriate light cone and ensemble average [9,10].
Unlike the analyses in Refs. [6,7], we find a result always
free from ultraviolet divergences and with no significant
infrared contributions either. As a consequence, correc-
tions are typically small, certainly too small to mimic a
sizeable fraction of dark energy. However, interestingly
enough, both their size and their z dependence strongly
depend on the particular function of dL being averaged.
We find, in particular, that the energy flux ## d$2

L is
practically unaffected by inhomogeneities, while the most
commonly used variables (like the distance modulus !#
5log10dL) may receive much larger corrections. This cre-
ates (at least in principle) intrinsic ambiguities in the
measure of the dark-energy parameters, unless the back-
reaction of stochastic inhomogeneities is properly taken
into account. Actually, the advantages of flux averaging for
minimizing biases on dark-energy parameters was first
pointed out in Ref. [11], where it was shown how the
binning of data in appropriate redshift intervals can reduce
the bias due to systematic effects such as weak lensing. It is
intriguing that the preferred role played by the flux variable
also comes out in this Letter where we perform a

PRL 110, 021301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

0031-9007=13=110(2)=021301(5) 021301-1 ! 2013 American Physical Society

Do Stochastic Inhomogeneities Affect Dark-Energy Precision Measurements?

I. Ben-Dayan,1,2 M. Gasperini,3,4 G. Marozzi,5 F. Nugier,6 and G. Veneziano5,7

1Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, Ontario M5S 3H8, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
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modes!kð!Þ, we can then obtain an expression for ðI"Þ#1

where first-order contributions drop out because of the
ensemble average, and the scalar perturbations only appear
through the so-called dimensionless power spectrum,
P ðk;!Þ ¼ ðk3=2"2Þj!kð!Þj2.

Unfortunately, ðI"Þ#1 contains integrals over null geo-
desics lying on the past light cone of the given observer
(see Ref. [10], Sec. 3.2), which get intertwined with the
time dependence of P , forcing us to proceed with an
approximate numerical integration. This will be done
below after inserting (as an instructive example) an illus-
tration of the limiting CDM case, where all integrals but
the one over k can be done analytically thanks to the time
independence of P ([10], Sec. 5).

In that case, the result can be written in the form

f"ðzÞ ¼
Z 1

0

dk

k
P ðkÞ½f1;1ðk; zÞ þ f2ðk; zÞ'; (9)

where f1;1 and f2 are complicated—but known—analytic
functions of their arguments [3]. Furthermore, the leading
contribution in the region of z relevant for dark-energy
phenomenology comes from terms of the type fðk; zÞ (
ðk=H 0Þ2 ~fðzÞ, where H 0 is the present Hubble scale. We
can then write to a very good accuracy,

f"ðzÞ ’ ½~f1;1ðzÞ þ ~f2ðzÞ'
Z 1

0

dk

k

!
k

H 0

"
2
P ðkÞ; (10)

where an explicit calculation gives [3]

~f 1;1ðzÞ ¼
10# 12

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
þ 5zð2þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
Þ

27ð1þ zÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
# 1Þ2 ; (11)

~f 2ðzÞ ¼ # 1

189

$
2# 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
þ zð9# 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
Þ

ð1þ zÞð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z

p
# 1Þ

%
: (12)

The absolute value (and sign) of f"ðzÞ are illustrated in
Fig. 1 showing the accuracy of the leading order terms
[Eq. (10)], and confirming that the backreaction of a real-
istic spectrum of stochastic perturbations induces negli-
gible corrections to the averaged flux at large z (the larger
corrections at small z due to ‘‘Doppler terms’’ has been
discussed in Ref. [10]). In addition, it shows that in any
case, such corrections have the wrong z dependence (in
particular, they change sign at some z) to simulate even a
tiny dark-energy component. For the considered spectrum
(behaving as kns#5log2k at large k, see Ref. [13]) the
spectral integral is convergent and very weakly sensitive
to the chosen value of the UV cutoff [10] representing here
the limit of validity of our perturbative approach.

We now come to the more realistic #CDM case, where
the f" correction should be obtained by a full numerical
integration of Eqs. (7) and (8). For simplicity, we will only
take into account those terms giving the leading
(k2-enhanced) contributions in the CDM case. For
#CDM we can generally expect a smaller correction due

to the fact that the spectrum is now suppressed at large k by
a lower value of the equality scale keq [13]. This is con-

firmed by the explicit numerical result for jf"j presented in
Fig. 2. The small value of jf"j at large z leads us to
conclude that the averaged flux is a particularly appropriate
quantity for extracting from the observational data the
‘‘true’’ cosmological parameters. As we are going to see
now, the situation is somewhat different for other functions
of dL.
Indeed, let us apply the general result of Eq. (3) to the

flux variable S ¼ " and consider two important examples:

Fð"Þ ¼ "#1=2 ( dL and Fð"Þ ¼ #2:5log10"þ const(
# (the distance modulus). For the luminosity distance,
following the notations of Eq. (2) and using the general
result from Eq. (3), we obtain
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FIG. 1. The fractional correction f" of Eq. (9) (solid curve)
compared with the same quantity given to leading order by
Eq. (10) (dashed curve) in the context of an inhomogeneous
CDM model. We have used for P ðkÞ the inflationary scalar
spectrum with the WMAP parameters [17] and the transfer func-
tion given in Ref. [13] (see also Ref. [10]). The plotted curve
refers, as an illustrative example, to an UV cutoff kUV ¼ 1 Mpc#1.
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FIG. 2. The fractional correction to the flux f" of Eq. (7) (thin
curves) is compared with the fractional correction to the lumi-
nosity distance fd of Eq. (13) (thick curves) for a #CDM model
with $# ¼ 0:73. We have used two different cutoff values:
kUV ¼ 0:1 Mpc#1 (dashed curves) and kUV ¼ 1 Mpc#1 (solid
curves). The spectrum is the same as that of Fig. 1 adapted to
#CDM.

PRL 110, 021301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

11 JANUARY 2013

021301-3

fd ¼ "ð1=2Þf! þ ð3=8Þhð!1=!0Þ2i: (13)

Similarly, for the distance modulus we obtain

h!i"!FLRW ¼ "1:25ðlog10eÞ½2f! " hð!1=!0Þ2i';
(14)

where f! is defined in Eq. (7).
As clearly shown by the two above equations, the cor-

rections to the averaged values of dL and ! are qualita-
tively different from those of the flux (represented by f!)
because of the extra contribution (inevitable for any non-
linear function of the flux) proportional to the square of the
first-order fluctuations. As mentioned before, the averaged
flux corrections have leading spectral contributions of the
type k2P ðkÞ. On the contrary, the new corrections to dL and
! are due to the so-called ‘‘lensing effect’’; they dominate
at large z and have leading spectral contributions of the
type k3P ðkÞ (as already discussed in Ref. [10]). The
explicit numerical integration reported in Fig. 2 confirms
that as a result, jf!j ( fd at large z. We stress that even
the k3-enhanced contributions are UV finite for the case
under consideration.

We also stress that our results concerning the effects of
lensing are in good agreement with previous estimates of
the bias on supernova observables [14] and other cosmo-
logical parameters [15] induced by weak-lensing magnifi-
cation effects. Unlike in those papers, however, our general
approach automatically includes (and estimates the effects
of) all possible corrections due to the stochastic fluctua-
tions of the cosmological background to second order for
all given functions of the flux (or of dL). In fact, as
discussed in detail in Refs. [2,3], the fractional correction
fd also includes, besides the lensing effect, Doppler,
Sachs-Wolfe, integrated Sachs-Wolfe, frame-dragging
effects, etc.

Let us now briefly discuss to what extent the enhanced
corrections due to the squared first-order fluctuations can
affect the determination of the dark-energy parameters if
quantities other than the flux are used in the fits. To this
purpose, we consider the much used (average of the) dis-
tance modulus given in Eq. (14), referred to as usual to the
homogeneous Milne model with !M ¼ 5log10½ð2þ zÞz=
ð2H 0Þ'. In Fig. 3 we compare the averaged value h!i"
!M with the corresponding expression in a homogeneous
"CDM model with different values of #". We also show
the expected dispersion around the averaged result repre-
sented by the square root of the variance [10]. The latter is
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h!2i" ðh!iÞ2

q
¼ )2:5ðlog10eÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!1=!0Þ2i

q
; (15)

while for the flux we simply find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!=!0Þ2i" ðh!=!0iÞ2

q
¼ )

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hð!1=!0Þ2i

q
: (16)

As illustrated in Fig. 3, we find that even for the distance
modulus, the effect of inhomogeneities on the average only
affects the determination of #" at the third decimal figure
(see also Fig. 2), at least for the inflationary power spec-
trum with the "CDM transfer function of Ref. [13]. In that

case, the curves for h!i and !FLRW are practically coinci-
dent at large z. We have considered other spectra which
take into account nonlinear effects and have more power at
short scales, like those obtained following [16]. Using such
spectra only affects very mildly the k2-enhanced terms
(hence the flux) while they increase the corrections wher-
ever the k3-enhanced lensing terms play a major role. In
particular, the variance due to the fluctuations, which is
already at the few-percent level at large z for the power
spectrum of Ref. [13] (see Fig. 3), can be further increased
[3]. Note that even for these improved spectra, all our
integrals are still free of UV divergences since, in any
case, P falls faster than k"3 (i.e., the matter density con-
trast spectrum grows slower than k).
Our main conclusions can be summarized as follows:
(1) Dealing directly with the experimentally measured

luminosity-redshift relation within a gauge-independent
approach leads to results for the fractional corrections to
the averaged variables and the corresponding variances
which are automatically free from UV (and IR) divergen-
ces for any function of the luminosity distance. This can be
contrasted with the case of more formal spacelike averages
[6,7] for which the physical interpretation of the results
may have no direct relation with the observed cosmic
acceleration (first reference in [5]) and, as shown in
Ref. [7], the accidental cancellation of UV divergences is
strongly dependent on the observable considered.
(2) The actual value of the backreaction strongly

depends on the quantity being averaged. It turns out to be
minimal for the flux!, which is also practically insensitive
to the short-distance behavior of the power spectrum.
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FIG. 3. The averaged distance modulus h!i"!M (thick solid
curve) and its dispersion of Eq. (15) (shaded region) are com-
puted for#" ¼ 0:73 and compared with the homogeneous value
for the unperturbed "CDM models with #" ¼ 0:69, 0.71, 0.73,
0.75, 0.77 (dashed curves). We have used kUV ¼ 1 Mpc"1 and
the same spectrum as in Fig. 2.
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Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or voids.
Here we present a fully relativistic treatment of this effect, studying how clustering modifies the mean
distance- (modulus-)redshift relation and its dispersion in a standard cold dark matter universe with a
cosmological constant. The best estimates of the local expansion rate stem from supernova observations at
small redshifts (0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to
data from cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e., the
effects of the local structure) is of the same order of magnitude as the current observational errors and must
be taken into account in local measurements of the Hubble expansion rate.
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The Hubble constant H0 determines the present expan-
sion rate of the Universe. For most cosmological phenom-
ena, a precise knowledge of H0 is of utmost importance. In
a perfectly homogeneous and isotropic world,H0 is defined
globally. But the Universe contains structures like galaxy
clusters and voids. Thus, the local expansion rate measured
by means of cepheids and supernovae at small redshifts
does not necessarily agree with the expansion rate of an
isotropic and homogeneous model that is used to describe
the Universe at the largest scales.
Recent local measurements of the Hubble rate [1,2] are

claimed to be accurate at the few percent level, e.g., Ref. [1]
finds H0 ¼ ð73.8 # 2.4Þ km s−1Mpc−1. In the near future,
observational techniques will improve further, such that the
local value of H0 will be determined at 1% accuracy [3],
competitive with the current precision of indirect measure-
ments of the global H0 via the cosmic microwave back-
ground (CMB) anisotropies [4].
The observed distance modulus μ is related to the

bolometric flux Φ and the luminosity distance dL by
(log≡log10)

μ ¼ −2.5 log½Φ=Φ10 pc& ¼ 5 log½dL=ð10 pcÞ&: ð1Þ

The relation between the intrinsic luminosity L, the
bolometric flux Φ, and the luminosity distance dL of a
source is Φ ¼ L=4πd2L. In a flat cold dark matter universe
with a cosmological constant (ΛCDM) with present matter
density parameterΩm, the luminosity distance as a function
of redshift z is given by

dLðzÞ ¼
1 þ z
H0=c

Z
z

0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωmð1 þ z0Þ3 þ 1 −Ωm

p : ð2Þ

As long as we consider only small redshifts, z ≤ 0.1,
the dependence on cosmology is weak, dLðzÞ≃ c½zþ
ð1 − 3Ωm=4Þz2&=H0, and the result varies by about 0.2%
when Ωm varies within the 2σ error bars determined by
Planck [4]. However, neglecting the model-dependent
quadratic term induces an error of nearly 8% for z≃ 0.1.
The observed Universe is inhomogeneous and aniso-

tropic on small scales, and the local Hubble rate is expected
to differ from its global value for two reasons. First, any
supernova (SN) sample is finite (sample variance), and,
second, we observe only one realization of a random
configuration of the local structure (cosmic variance).
Thus, even for arbitrarily precise measurements of fluxes
and redshifts, the local H0 differs from the global H0.
Sample variance is fully taken into account in the literature,
but cosmic variance is usually not considered.
In the context of Newtonian cosmology, cosmic variance

of the local H0 has been estimated in Refs. [5–8]. The first
attempts to estimate cosmic variance of the local Hubble
rate in a relativistic approach can be found in Refs. [9,10]
(see, also, Ref. [11]) based on the ensemble variance of the
expansion rate averaged over a spatial volume. It has been
shown that this approach agrees very well with the
Newtonian one [9], and it predicts a cosmic variance which
depends on the sampling volume on the subpercent to
percent level. However, this approach still neglects the fact
that observers probe the past light cone and not a spatial
volume. Also, the measured quantity is not an expansion
rate but a set of the bolometric fluxes and redshifts.
In this Letter, we present the first fully relativistic

estimation of the effects of clustering on the local meas-
urement of the Hubble parameter without making any
special hypothesis about how the fluctuations can be
modeled around us. Considering only the measured
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quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1 þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1 þ fΦðzÞ'; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2

hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2 τ2ðzÞ

3

Z
kUV

H0

dk
k
k2PψðkÞ; ð6Þ

where

τðzÞ ¼
Z

ηs

ηin

dη
aðηÞ
aðηsÞ

gðηÞ
gðη0Þ

:

gðηÞ is the growth factor, and the source and the observer
times are indicated with the suffixes s and 0.
The brightness of supernovae is typically expressed in

terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,

hμi − μFL ¼ −
2.5

lnð10Þ

#
fΦ −

1

2
hðΦ1=Φ0Þ2i

$
; ð7Þ

where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z∼0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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quantities and the cosmological standard model with
stochastic inhomogeneities, we study the effect of cosmic
structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1 þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1 þ fΦðzÞ'; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2

hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

fΦðzÞ≃ −
!

1

HðzÞΔη

"
2 τ2ðzÞ

3

Z
kUV

H0

dk
k
k2PψðkÞ; ð6Þ

where

τðzÞ ¼
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ηs
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dη
aðηÞ
aðηsÞ

gðηÞ
gðη0Þ

:

gðηÞ is the growth factor, and the source and the observer
times are indicated with the suffixes s and 0.
The brightness of supernovae is typically expressed in

terms of the distance modulus μ. Because of the nonlinear
function relating μ and Φ, one obtains different second
order contributions,

hμi − μFL ¼ −
2.5

lnð10Þ

#
fΦ −

1

2
hðΦ1=Φ0Þ2i

$
; ð7Þ

where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z∼0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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quantities and the cosmological standard model with
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structures on the local determination ofH0, i.e., taking light
propagation effects fully into account. Other relativistic
approaches were recently proposed in Refs. [12,13]. In
Ref. [12], a “Swiss cheese” model was used in modeling
the local Universe; in Ref. [13], a “Hubble bubble” model
was used and the perturbation of the expansion rate, which
is not directly measurable, was considered.
We shall find that the mean value of the Hubble

parameter is modified at the subpercent level, while the
contribution from clustering to the error budget is larger,
typically 2% to 3%, hence, as large as observational errors
quoted in the literature [1]. As we shall see, the small
modification of the mean of the Hubble parameter can be
reduced by a factor of 3 by using the flux instead of the
distance modulus. On the other hand, the cosmic variance
induced by inhomogeneities on H0 is independent of the
observable used. Finally, we find that even for an infinite
number of SN Ia within 0.01 < z < 0.1 with identical
redshift distribution compared to a finite sample consid-
ered, clustering induces a minimal error of about 2% for a
local determination of H0.
Following Refs. [14,15], we use cosmological perturba-

tion theory up to second order with an almost scale-
invariant initial power spectrum to determine the mean
perturbation of the bolometric flux (and of the distance
modulus) from a standard candle and its variance.
Let us first consider the fluctuation of the mean on a

sphere at fixed observed redshift z. We denote the light-
cone average [16] over a surface at fixed redshift by h! ! !i
and a statistical average by ! ! !. Using the results of
Refs. [17,18] (see, also, Ref. [19]), the fluctuation of the
flux Φ ∝ d−2L , away from its background value in the
Friedmann-Lemaître universe [denoted by ðdFLL Þ−2] is
given by

d−2L ¼ ðdFLL Þ−2½1 þ Φ1=Φ0 þ Φ2=Φ0'; ð3Þ

where we expand Φ ¼ Φ0 þ Φ1 þ Φ2 up to second order in
perturbation theory. The ensemble average of hΦ1=Φ0i
vanishes at first order but not at second order and must be
added to another second order contribution from Φ2=Φ0;
we obtain (see, e.g., Ref. [20])

hd−2L iðzÞ ¼ ðdFLL Þ−2½1 þ fΦðzÞ'; ð4Þ

where for z ≪ 1,

fΦðzÞ≃ −
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1
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hð~vs · ~nÞ2i: ð5Þ

Here, ~n denotes the direction to a given SN and ~vs its
peculiar velocity, η is conformal time,Δη ¼ η0 − ηðzÞ is the
difference between the present time and the time at redshift

z, and H is the conformal Hubble parameter. In Ref. [15],
the full contribution is given in terms of 39 Fourier integrals
over the dimensionless power spectrum of the Bardeen
potential today, Pψ ðkÞ ¼ ðk3=2π2ÞjΨkðη0Þj2 with different
kernels. We have removed the observer velocity since
observations are usually quoted in the CMB frame corre-
sponding to ~v0 ¼ 0. A nonvanishing observer velocity
would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives
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function relating μ and Φ, one obtains different second
order contributions,
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where at z ≪ 1, we also find

hðΦ1=Φ0Þ2i≃ −4fΦ: ð8Þ

The approximate equalities in Eqs. (5) and (8) are valid
for z ≪ 1, where the first order squared contribution of the
peculiar velocity terms dominates over the other second
order contributions. For z∼0.3 and larger, additional
contributions notably due to lensing become relevant,
see Refs. [14,15].
For measurements of the Hubble parameter, low redshift

SNe are used in order to minimize the dependence of the
result on cosmological parameters. As a consequence,
Eqs. (5) and (8) are good approximations for the aim of
this Letter.
Hereafter, we use the cosmological parameters from

Planck [4], the linear transfer function given in Ref. [21]
taking baryons into account, and kUV ¼ 0.1 hMpc−1, see
Ref. [15] for details. Increasing the cutoff does not change
our result due to two effects: the kernel k2PψðkÞ of the
peculiar velocity contribution decreases at large k, and
small-scale fluctuations are incoherent (see below) and
their contribution to the variance decays like 1=N, where N
is the number of supernovae.
As an illustration for the effects of cosmic structure on

the observed flux from a SN, we plot in Fig. 1 the average
hd−2L iðzÞ and its variance (as defined in Ref. [20]) using
Eqs. (4)–(6) and (8). Figure 1 clearly shows how at low
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Bias in H0 from 2nd order pertn theory

• Backreaction causes systematic bias in H measurement

• very large effects on DM??

• interesting bias in flux density, distance etc at low-z

• But isn’t this just the residual “homogeneous Malmquist bias” in 
“inverse + type II” method?



Malmquist bias?

• Objects in a region of estimated distance space will have a 
distance that is biased

• because of (large) uncertainty in distance

• But “Schechter’s method” largely avoids that

• don't measure velocity as a function of distance

• do it the other way round

• small scatter in distance for objects same redshift

• but not completely free from bias

• analysed by Lynden-Bell ’92 and Willick & Strauss ‘97 



DLB ‘92



Willick et al 1997 (astro-ph vs ApJ)

• KH15: The “3” here comes from the standard formula for HMB.

• The right answer is 1.5

• as found by the relativistic backreaction folks!

2.2.2. Further discussion of the VELMOD likelihood

The physical meaning of the VELMOD likelihood expressions is clarified by considering them in a suitable
limit. If we take σv to be “small,” in a sense to be made precise below, the integrals in Eqs. (11) and (12) may
be approximated using standard techniques. If in addition we neglect sample selection (S = 1) and density
variations (n(r) = constant), and assume that the redshift-distance relation is single-valued, we find for the
forward relation:

P (m|η, cz) ≃
1√

2πσe
exp

{

−
1

2σ2
e

(
m −

[
M(η) + 5 log w +

10

ln 10
∆2

v

])2
}

, (15)

where w is the solution to the equation cz = w + u(w), i.e., it is the distance inferred from the redshift and
peculiar velocity model; ∆v ≡ σv/[w(1 + u′)], where u′ = (∂u/∂r)r=w , is the effective logarithmic velocity
dispersion; and

σe ≡
[

σ2
TF +

(
5

ln 10

)2

∆2
v

]1/2

(16)

is the effective TF scatter, including the contribution due to σv. An analogous result holds for the inverse
relation. The criterion ∆2

v ≪ 1, which quantifies the statement that σv is “small,” must be satisfied to derive
Eq. (15).

Eq. (15) shows that the probability distribution P (m|η, cz) preserves the Gaussian character of the real-
space TF probability distribution P (m|η, r) in this limit. However, the expected value of m is shifted from the
“näıve” value M(η) + 5 log w by an amount ∼ 4.3∆2

v . This shift is in fact nothing more than the homogeneous
Malmquist bias due to small-scale velocity noise; it differs in detail from the usual Malmquist expression (i.e.,
that which affects a Method I analysis) because it arises from the Gaussian (rather than log-normal) probability
distribution, Eq. (9). Furthermore, the effective scatter σe is larger than σTF, because the velocity dispersion
introduces additional distance error and thus magnitude scatter. The effects associated with velocity noise
diminish with distance (∆v ∝ r−1), however; the velocity Malmquist effect vanishes in the limit of large
distances, in contrast with the distance-independent Malmquist effect for Method I, and the effective scatter
approaches the TF scatter. At large enough distance the VELMOD likelihood approaches a simple Gaussian TF
distribution with expected apparent magnitude M(η) + 5 log w, and VELMOD reduces to standard Method II.

Indeed, Eq. (15) enables us to define the regime in which VELMOD represents a significant modification of
Method II. The distance rII at which the velocity noise effects become unimportant is determined by rII ≫
σv/∆TF(1 + u′), where ∆TF = ln 10σTF/5 is the fractional distance error due to the TF scatter (∆TF ≃ 0.2
for the samples used here). For σv = 125 km s−1, the value we find for the real data (§ 4.5), this shows that in
the unperturbed Hubble flow, where u′ = 0, velocity noise effects become unimportant beyond ∼ 1500 km s−1.
However, at about this distance, in many directions, the Local Supercluster significantly retards the Hubble flow,
u′ ≃ −0.5, so that the effective σv is about twice its nominal value. Thus, VELMOD in fact differs substantially
from Method II to roughly twice the Virgo distance. This fact guided our decision to apply VELMOD only out
to 3000 km s−1 (cf. § 4).

Eq. (15) also demonstrates that maximizing likelihood (minimizing Lforw) is not equivalent to χ2 minimiza-
tion, even under the adopted assumptions of constant density and negligible selection effects, because of the
factor σ−1

e in front of the exponential factor. This factor couples the velocity model (i.e., the values of w and
u′(w)) to the velocity noise. In particular, maximizing the VELMOD likelihood is not equivalent to minimizing
TF scatter (cf. § 4.5), except in the limit that σv is set to zero.

The assumptions required for deriving Eq. (15) remind us that there are two other factors which distinguish
VELMOD from standard Method II. First, for realistic samples one cannot assume that S = 1. The presence of the
selection function in Eqs. (6) and (7) is essential for evaluating true likelihoods, and we have fully incorporated

9
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2.2.2. Further Discussion of V EL MOD L ikelihood
The physical meaning of the VELMOD likelihood expressions is clariÐed by considering them in a suitable limit. If we take
to be ““ small,ÏÏ in a sense to be more made precise below, the integrals in equations and may be approximated usingp

v
(11) (12)

standard techniques. In addition, if we neglect sample selection (S \ 1) and density variations [n(r) \ constant], and assume
that the redshift-distance relation is single-valued, we Ðnd, for the forward relation,

P(m o g, cz) ^ 1

J2np
e

exp
E[ 1

2p
e
2
G
m[C

M(g)] 5 log w] 3 ] 5
ln 10

*
v
2DH2F , (15)

where w is the solution to the equation cz\ w] u(w), i.e., it is the distance inferred from the redshift and peculiar velocity
model ; where is the e†ective logarithmic velocity dispersion ; and*

v
4 p

v
/[w(1 ] u@)], u@ \ (Lu/Lr)

r/w
,

p
e
4
C
pTF2 ]A 5

ln 10
B2*

v
2D1@2 (16)

is the e†ective TF scatter, including the contribution due to An analogous result holds for the inverse relation. Thep
v
.

criterion which quantiÐes the statement that is ““ small,ÏÏ must be satisÐed to derive*
v
2 > 1, p

v
equation (15).

shows that the probability distribution P(m o g, cz) preserves the Gaussian character of the real-space TFEquation (15)
probability distribution P(m o g, r) in this limit. However, the expected value of m is shifted from the ““ na•�ve ÏÏ value M(g) ] 5 log
w by an amount This shift is in fact nothing more than the homogeneous Malmquist bias due to small-scale velocityD4.3*

v
2.

noise ; it di†ers in detail from the usual Malmquist expression (i.e., that which a†ects a Method I analysis) because it arises
from the Gaussian (rather than lognormal) probability distribution Furthermore, the e†ective scatter is larger(eq. [9]). p

ethan because the velocity dispersion introduces additional distance error and thus magnitude scatter. However, thepTF,e†ects associated with velocity noise diminish with distance the velocity Malmquist e†ect vanishes in the limit of(*
v
P r~1) ;

large distances, in contrast with the distance-independent Malmquist e†ect for Method I, and the e†ective scatter approaches
the TF scatter. At large enough distance, the VELMOD likelihood approaches a simple Gaussian TF distribution with
expected apparent magnitude M(g) ] 5 log w, and VELMOD reduces to the standard Method II.

Indeed, enables us to deÐne the regime in which VELMOD represents a signiÐcant modiÐcation of Methodequation (15)
II. The distance at which the velocity noise e†ects become unimportant is determined by whererII rII ? p

v
/*TF(1] u@),

is the fractional distance error due to the TF scatter for the samples used here). For km*TF\ ln 10pTF/5 (*TF ^ 0.2 p
v
\ 125

s~1, the value we Ðnd for the real data this shows that in the unperturbed Hubble Ñow, where u@\ 0, velocity noise(° 4.5),
e†ects become unimportant beyond D1500 km s~1. However, at about this distance, in many directions, the Local Super-
cluster signiÐcantly retards the Hubble Ñow, u@ ^ [0.5, so that the e†ective is about twice its nominal value. Thus,p

vVELMOD in fact di†ers substantially from Method II to roughly twice the Virgo distance. This fact guided our decision to
apply VELMOD only out to 3000 km s~1 (cf. ° 4).

also demonstrates that maximizing the likelihood (minimizing is not equivalent to s2 minimization,Equation (15) Lforw)
even under the adopted assumptions of constant density and negligible selection e†ects, because of the factor in front ofp

e
~1

the exponential factor. This factor couples the velocity model [i.e., the values of w and u@(w)] to the velocity noise. In
particular, maximizing the V EL MOD likelihood is not equivalent to minimizing T F scatter (cf. except in the limit that is° 4.5), p

vset to zero.
The assumptions required for deriving remind us that there are two other factors that distinguish VELMODequation (15)

from standard Method II. First, for realistic samples one cannot assume that S \ 1. The presence of the selection function in
equations and is essential for evaluating true likelihoods, and we have fully incorporated these e†ects into our(6) (7)

Second, the galaxy density n(r) is not e†ectively constant along most lines of sight. Thus, VELMOD, like Method Ianalysis.12
but unlike Method II, requires that n(r) be modeled. We do so here by using the IRAS density Ðeld itself, which is a good
approximation to the number density of the spiral galaxies in the TF samples. The density Ðeld has a nonnegligible e†ect on
the VELMOD likelihood whenever it changes rapidly on the scale of the e†ective velocity dispersionp

v
/(1 ] u@).

The most signiÐcant di†erences between VELMOD and Method II thus occur in regions where u@] [1 (Ñat or triple-
valued zones), or when the density varies particularly sharply. In practice, both these e†ects occur in the vicinity of large
density enhancements such as the Virgo Cluster. We illustrate this in which shows the redshift-distance relation andFigure 1,
the corresponding value of P(r o cz) P P(cz o r)P(r) in the vicinity of triple-valued zones. When looking at these panels, keep in
mind that the VELMOD likelihood is given by multiplying P(r o cz) and the TF probability factor P(m o g, r) and integrating over
the entire line of sight. Figures and depict the situation near the core of a strong cluster, and Figures and depict it1a 1b 1c 1d
farther from the center. In each case, the cloud of points represents the velocity noise, here taken to be km s~1. Inp

v
\ 150

the redshift of 1200 km s~1 crosses the redshift-distance diagram at three distinct distances. The quantity P(r o cz)Figure 1a,
shows three distinct peaks. The highest redshift one is the strongest because of the r2 weighting in Inequation (8). Figure 1b,
the redshift of 1700 km s~1 is such that the object just misses being triple-valued ; however, the Ðnite scatter in the
redshift-distance diagram means that there is still appreciable probability that the galaxy is associated with the near crossing
at cz D 900 km s~1. In the redshift-distance diagram goes nearly Ñat for almost 600 km s~1 ; a redshift that comesFigure 1c,
close to that Ñat zone has a probability distribution that is quite extended. Finally, shows a galaxy whose redshiftFigure 1d
crosses the redshift-distance diagram in a region in which it is quite linear, and the probability distribution has a single,
narrow peak without extensive tails.

12 Selection e†ects are not speciÐc to VELMOD per se, however. They can and should be modeled in any Method IIÈlike analysis. In particular, they do
not vanish in the limit.*

v
] 0
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being compiled. We also should consider extending this work to other distance indicators ; surface brightness Ñuctuation
galaxies et al. with their accurate sampling of the nearby velocity Ðeld, are natural candidates for the VELMOD(Tonry 1997),
analysis. On the modeling side, this work has left us with several conundrums, the most puzzling of which is why the linear
IRAS model does so well with a smoothing scale of 300 km s~1. More work is needed with N-body simulations to understand
this. Finally, we will not have a coherent picture of the relationship between the velocity and density Ðelds until we can
understand the di†erent values of obtained by VELMOD and POTIRAS.b
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APPENDIX A

IRAS VELOCITY-DENSITY RECONSTRUCTION

The redshifts of galaxies in the IRAS sample are a†ected by the same peculiar velocities that we are attempting to measure
in the Mark III data set. If we measure redshifts cz in the rest frame of the Local Group, then

cz\ r ] rü Æ [¿(r) [ ¿(0)] , (A1)

where is the peculiar velocity of the Local Group and is the peculiar velocity at position r. Indeed, because the galaxy¿(0) ¿(r)
density Ðeld shows coherence, the galaxy density Ðeld measured in redshift space di†ers systematically from that in reald

g
(s)

space, as was Ðrst described in detail by cf. and for reviews). The linear perturbationd
g
(r), Kaiser (1987 ; SW Strauss 1996

theory assuming gravitational instability enables us to correct for the e†ects of these velocities. We use here the iteration
technique described by et al. and et al. as updated by et al. The density and velocityYahil (1991) Strauss (1992c), Sigad (1997).
Ðelds are calculated within a sphere of radius 12,800 km s~1 ; the density Ñuctuation Ðeld is assumed to be zero beyond this
radius. Here we very brieÑy reiterate the improvements described in the Sigad et al. paper and emphasize certain di†erences
from the approach there.

In regions in which the IRAS velocity Ðeld model predicts a nonmonotonic relation between redshift and distance along a
given line of sight, it becomes ambiguous as to how to assign a distance to a galaxy given its redshift Our approach is(Fig. 1).
similar to that used throughout this paper : we use our assumed density and velocity Ðelds to calculate a probability
distribution of a galaxy along a given line of sight.

Along a given line of sight, we ask for the joint probability distribution of observing a galaxy along a given line of sight, with
redshift cz, Ñux density f, and (unknown) distance r :

P(cz, f, r)\ P(cz o r)P( f o r)P(r) (A2)

(cf. The Ðrst term is given by our velocity Ðeld model along the line of sight and thus is given by For theeq. [5]). equation (9).
iteration code, we set km s~1, independent of position, similar to the best-Ðt value we Ðnd when we Ðtted for fromp

v
\ 150 p

vthe velocity Ðeld data.
The second term is given by the luminosity function of galaxies :

P( f o r) \ '(L \ 4nr2lf ) dL
df

P r2'(L ) , (A3)

where the derivative is needed because the probability density is deÐned in terms of f, not Finally, the third term inL .21
is given by the galaxy density distribution along the line of sightequation (A2) (eq. [8]).

As described in et al. the calculations of the velocity and density Ðelds are done on a Cartesian grid. OurSigad (1997),
approach therefore is to assign each galaxy to the grid via cloud-in-cell (weighting by the selection function, of course), where
(unlike et al. we distribute each galaxy along the line of sight according to the distribution function of expectedSigad 1997)
distance In order to calculate the selection function for an object, we of course need to have a deÐnite position for(eq. [A2]).
it ; for this purpose, we assign it the expectation value of its distance, following et al.Sigad (1997) :

SrT \ / rP(cz, f, r)dr
/ P(cz, f, r)dr

. (A4)

et al. discuss the use of various Ðltering techniques to suppress the shot noise in the derived density andSigad (1997)
velocity Ðelds. While they argue for the use of a power-preserving Ðlter for the comparison of the IRAS and POTENT density
Ðelds, we have found through extensive experimentation with mock catalogs that for the VELMOD analysis, a Wiener Ðlter
gives the best comparison between the density Ðeld and the peculiar velocity data.

21 Eq. (144) of mistakenly left o† this last term.SW
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Why there is no Newtonian 
backreaction
arXiv:1703.08809



Conventional Framework for Cosmological Dynamics
• Homogeneous background with scale factor a(t) 

• a'' = -(4π/3) G ρb a        (' = d/dt)  Friedmann eq 

• Structure (in e.g. N-body calc.) obeys 

• x''+ 2 (a'/a) x' + ∇φ / a2 = 0 where 

• x = r / a(t) are "conformal" coords, and 

• ∇2φ = 4π G (ρ - ρb) a2  

• No feedback (or "backreaction") of δρ on evolution of a(t) 

• G.F.R. Ellis (1984...): is this legitimate? 

• explored by Buchert & Ehlers '97 plus many others



Racz et al 2017: Modified N-body calculations
• They assume the conventional structure equations: 

• x'' + 2 (a'/a) x' + ∇φ / a2 = 0 

• ∇2φ = 4π G (ρ - ρb) a2 

• but evolve a(t) according to a → a + a'δt 

• with a' obtained by averaging local expansion:<a'/a> 
invoking "separate universe" approximation 

• "Strong backreaction" based on Newtonian physics 

• Big effect: a(t) very similar to ΛCDM concordance model 

• "concordance cosmology without dark energy"

Concordance cosmology without dark energy 3

the basis of other successful approximations, such as halo
models and the Press–Schecter formalism.

The volumetric expansion of mini-universes is the cube
of the linear expansion, assuming statistical isotropy. Ignor-
ing the boundary conditions and the local environment of
touching Lagrangian regions, one can average the volume
increment of the independent domains to get the total vol-
ume increment of the simulation cube, i.e. the global in-
crement of a homogeneous, e↵ective scale factor, c.f. Eq. 2.
This is equivalent to neglecting correlations between regions
and non-sphericity caused by tidal forces, not unlike in the
case of halo models. The statistical approach means that
we can avoid stitching together regions of space-time. We
use a global simulation time step size and, while the cor-
responding infinitesimal changes of local redshift may vary
from region to region, the expansion rate is averaged in every
simulation step, hence distances and velocities are rescaled
homogeneously using the e↵ective scale factor. As a result,
similarly to standard N-body simulations, time is kept ho-
mogeneous and in one-to-one correspondence with redshift.

We ran simulations with up to 1.08·106 particles of mass
M = 1.19 ·1011M� in a volume of 147.623 Mpc3. The initial
redshift was set to z = 9 for both the standard ⇤CDM and
the AvERA simulations. At this redshift, backreaction and
the e↵ect of ⇤ are both expected to be negligible. Since we
focus on the expansion rate, Zel’dovich transients from the
late start are insignificant. Initial conditions were calculated
using LPTic (Crocce, Pueblas & Scoccimarro 2006) with a
fluctuation amplitude of �8 = 0.8159 which is defined as-
suming the ⇤CDM growth function. The initial expansion
rate was set to match the current value of H0 = 67.74 km/s

Mpc
(Planck Collaboration 2016) for the ⇤CDM model, yielding

Hz=9.0 = 1191.9 km/s
Mpc . Except for the value of ⇤, AvERA

simulations were run with parameters derived from the lat-
est Planck CMB observations.

As a consistency test, the initial conditions exactly re-
produce the ⇤CDM expansion history when inhomogeneities
are not accounted for and ⇤ is non-zero. Similarly, with ⇤ =
0 and homogeneous expansion, the initial conditions repro-
duce the expansion history of a flat, matter only (⌦m = 1,

⌦⇤ = 0) FLRW model with H0 = 37.69 km/s
Mpc . Fig. 2 sum-

marizes the main results of our paper, where the expansion
history a(t), the Hubble parameter H(t), the redshift z(t)
and the average density ⇢(t) are plotted for the AvERA
model (blue), ⇤CDM (red) and EdS (green) with the same
initial conditions at z = 9. The evolution of the parame-
ters from AvERA mimic ⇤CDM remarkably well, while the
EdS model deviates more and more at later epochs. We em-
phasize that, despite the overall similarity, there are small
numerical di↵erences between the former two models which
can be tested in future high precision observations.

As it was mentioned before, in AvERA simulations the
expansion history and the resulting present day Hubble pa-
rameter depend on the particle mass, which corresponds to
the coarse graining scale. To explore the e↵ects of the coarse
graining scale, we executed simulations with di↵erent parti-
cle masses between 1.17 · 1011 � 3 · 1012M�. The resulting
z = 0 Hubble parameters, as a function of particle mass, are
summarised in Tab. 1. The sensitivity of H0 to the coarse
graining scale is relatively minor: a factor of 10 change in
the particle mass causes about a 10 per cent change in the

Figure 2. The expansion history of the universe. Clockwise from
the upper left, we plot the scale factor, the Hubble parameter,
the matter density and the redshift as functions of the simulation
time t, i.e. the age of the universe. See the text for a discussion.

present time Hubble parameter, see Fig. 4. The detailed in-
vestigation of this e↵ect will be presented in a future paper.

3 COMPARISON WITH OBSERVATIONS

Given the close similarity of the expansion history of the
AvERA model with that of ⇤CDM, and the fact that linear
growth history is driven by the time evolution of the expan-
sion rate, the AvERA model provides an adequate frame-
work for the interpretation of many observations support-
ing the concordance model, despite the fact that the current
version of the simulation is not suitable yet to compute light
propagation across the curved space-time regions. Luckily,
luminosity distance at low redshift (but beyond the statis-
tical scale of homogeneity) is primarily determined by the
expansion history and is only slightly sensitive to curvature.
In what follows, we do not attempt to fit any data, we simply
plot our fiducial model with di↵erent coarse graining scales
against select key observations.

One of the first and strongest observational proofs of
accelerating cosmic expansion came from type Ia super-
nova distance modulus measurements (Riess et al. 1998;
Perlmutter et al. 1999; Scolnic et al. 2015). Fig. 3 shows
the distance moduli from the observations overplotted with
curves from the EdS, Planck ⇤CDM, and our model.
We used the SuperCal compilation (Scolnic et al. 2015;
Scolnic & Kessler 2016) of supernova observations, with
magnitudes corrected to the fiducial color and luminosity,
and set the zero point of the absolute magnitude scale to
match the Cepheid-distance-based absolute magnitudes as
determined by Riess et al. (Riess et al. 2016). Both the
Planck ⇤CDM and our AvERA model follow the observed
deviation from EdS. If we choose the coarse graining scale



Racz et al. world view

• "N-body simulations integrate Newtonian dynamics with a 
changing GR metric that is calculated from averaged 
quantities" 

• "changing GR metric": FRW metric: expansion factor a(t) 

• a(t) comes from strong-field GR physics 

• so we don't really understand it except in highly 
idealised (e.g. homogeneous) situations 

• hence legitimate to propose alternative ansatz? 

• a(t) - the "expansion of space" - affects the small-scale 
dynamics of structure



Is it legitimate to modify the Friedmann equation?

• Does emergence of structure really "backreact" on a(t)? 

• Can address this in Newtonian gravity.  Relevant as: 

• Accurate description of the local universe (v << c) 

• aside from effects from BHs 

• this is where we observe e.g. H0 = 70 km/s/Mpc! 

• not H0 ~ 35 km/s/Mpc expected w/o dark energy, Ωk 

• At z = 0.1 relativistic corrections ~ 0.01 

• If backreaction is important at > 1% level Newtonian 
analysis should show it



Why we might expect backreaction - tidal torques

• Neighbouring structures exert torques on each other 

• happens as structures reach δ ~ 1 

• a non-linear (2nd order) effect 

• purely Newtonian 

• explains spin of galaxies  

• can this affect expansion? 

• it does in the local group 

• do internal degrees of freedom couple to (i.e. 
exchange energy with) universal expansion  



Inhomogeneous Newtonian cosmology
• Lay down particles on a uniform grid in a big uniformly 

expanding sphere (v = Hr) 

• Perturb the particles off the grid r -> r + δr 

• plus related velocity perturbations to generate "growing 
mode" of structure 

• g(r) can be decomposed into: 

• homogenous field sourced by mean density ρ 

• inhomogeneous field sourced by δρ (little dipoles) 

• equations of motions r'' = g can be re-scaled 

• gives the equations that are solved in N-body codes



Newtonian gravity in re-scaled coordinates

2 Nick Kaiser

is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|
3
. (5)

These may be solved numerically provided initial positions
ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|
3
�

ä

a
xi. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
xi, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations
(6) become

ẍi + 2
ȧ

a
ẋi�

Gm

a3

Z
d
3
x �n(x)

x� xi

|x� xi|
3

= �

✓
ä

a
+

4⇡Gmn

3a3

◆
xi.

(8)

It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|
3
. (5)

These may be solved numerically provided initial positions
ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|
3
�

ä

a
xi. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
xi, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations
(6) become

ẍi + 2
ȧ
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x �n(x)

x� xi

|x� xi|
3

= �
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3a3

◆
xi.

(8)

It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|
3
. (5)

These may be solved numerically provided initial positions
ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|
3
�

ä

a
xi. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
xi, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations
(6) become

ẍi + 2
ȧ
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|
3
. (5)

These may be solved numerically provided initial positions
ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|
3
�

ä

a
xi. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
xi, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations
(6) become

ẍi + 2
ȧ
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It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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2016; and has been widely discussed in reviews of backreac-

tion.

In a similar vein, Racz et al. (2017) have proposed that

the successes of the ⇤CDM concordance cosmology can be

obtained without the need for dark energy. They say ‘Cos-

mological N-body simulations integrate Newtonian dynam-

ics with a changing GR metric that is calculated from av-

eraged quantities.’ but that ‘There is a choice in how the

averaging is done.’ They propose to maintain equations (2)

and (3) but obtain a(t) by averaging the local expansion rate

ȧ/a computed from the local density under some simplify-

ing assumptions and then using this to update a(t) at each

time-step. Performing N-body calculations using this algo-

rithm and with matter only they find a(t) very similar to the

solution of the Friedmann equation in ⇤CDM. They argue

that the successes of the concordance cosmology can thereby

be retained without the need for dark energy through this

‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction

from structure causes a(t) to deviate at all from the solu-

tion of (1)? We can address this in the context of New-

tonian gravity. This is relevant because Newtonian gravity

should provide a very accurate description of the local uni-

verse since all velocities – Hubble and peculiar – are small.

And it is in the relatively local universe that the current

expansion rate – a problem for matter dominated cosmol-

ogy in the conventional framework – is measured. Also, the

absolute value of the curvature radius, which is arguably a

non-Newtonian construct and which may be identified with

a, is not relevant here. The absolute value of a drops out

of the equations above. All that appears is the expansion

rate ȧ/a and how a(t) changes with time. In a homogeneous

model these are determined locally. The question of how in-

homogeneity a↵ects the expansion might seem to be more

complex, but it would be bizarre indeed if the expansion

rate of the local universe were a↵ected by the emergence of

structure in the distant universe. So if backreaction is at all

important it should be revealed in a Newtonian analysis.

We will now show that, despite the apparently ques-

tionable assumption of homogeneity in (1), the system of

equations (1-3) is actually precisely equvalent to the full

Newtonian equations of motion.

2 NEWTONIAN COSMOLOGY IN SCALED

COORDINATES

For N particles of mass m interacting under their mutual

gravitational attraction there are 3N second order di↵eren-

tial equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|3
. (5)

These may be solved numerically provided initial positions

ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes
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What we are interested in is the motion of particles with

initial conditions that are close to being in uniform Hubble

expansion with some initial expansion rate H (very close if

we start at early times). So we might lay down particles on a

regular grid in r-space within some large spherical boundary

centred on the origin and give the particles small displace-

ments �r and velocities ṙ = Hr+�ṙ with ‘peculiar’ velocities

�ṙ chosen to excite the growing mode. The corresponding

initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth

order’ acceleration that, in the limit that the grid spacing

becomes very small, is the same as the gravitational acceler-

ation of a uniform density sphere, which grows linearly with

xi, plus a perturbation determined by the displacements

from the grid (we may think of the source of the gravity

being that of the unperturbed grid of particles plus that of

a set of dipole sources). If we define the number density of

particles in x-space n(x) ⌘
P

i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations

(6) become
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It is interesting to compare this with the conventional

equations. Those are 3N + 1 equations (3 per particle plus

the Friedmann equation for a) whereas here we have only

3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is

such that the RHS of (8) vanishes – i.e. that a(t) is a solution

of (1) – in which case the vanishing of the LHS is equivalent

to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be

ȧ/a = H then we see from the second of (7) that ẋ = �ṙ/a;

the initial velocity in x-space is a pure perturbation with no

Hubble-flow component.

We thereby recover the original conventional system of

equations, in which there is no feedback (or ‘backreaction’)

from the structure equations on the expansion. But this is

no longer open to the challenge that (1) is only an approx-

imation. Equation (8) is precisely equivalent to (5); we are

simply using the freedom in choice of a(t) to impose (1) as

an identity.

Alternatively, if one does not require (1) one obtains

modified ‘structure’ equations with a large-scale radial ac-

celeration that would drive a Hubble-like flow to compen-

sate. The results for all physical quantities such as positions,

velocities, density etc. however are all invariant with respect

to the choice of a(t).

3 DISCUSSION

We have tried to clarify the meaning of the conventional

equations of Newtonian cosmology. We have expressed the

usual Newtonian equations (5) in terms of re-scaled (or what

cosmologists call ‘comoving’) coordinates x to obtain (8).

But in these equations the scale factor a(t) is completely

arbitrary and has no physical impact so there is no dynami-

cal equation that a(t) must obey. This reflects the fact that

the universe we live in can, if one so wishes, be considered
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is larger than the largest existing inhomogeneities.’, while
on the other they argue that ‘the “conspiracy assumption”
that Q = 0 [. . . ] must be considered a strong restriction on
generality’.

Equation (4) is the basis of ‘kinematic backreaction’;
the idea that there is a modification of the expansion rate
caused by the emergence of structure. It has been studied in
N-body simulations by Buchert, Kerscher & Sicka 2000, who
make some interesting claims, and by Kazimierczak 2016,
and has been widely discussed in reviews of backreaction.

In a similar vein, Racz et al. (2017) have proposed that
the successes of the ⇤CDM concordance cosmology can be
obtained without the need for dark energy. They say “Cos-
mological N-body simulations integrate Newtonian dynam-
ics with a changing GR metric that is calculated from av-
eraged quantities.” but that “There is a choice in how the
averaging is done.” Specifically, they propose to maintain
equations (2) and (3) but obtain a(t) by averaging the lo-
cal expansion rate computed from the local density under
some simplifying assumptions. Performing N-body calcula-
tions using this algorithm and with matter only they find
that the averaged expansion rate turns out to be very simi-
lar to that found from solutions of the Friedmann equations
in ⇤CDM. They argue thereby that all of the successes of
the concordance cosmology can be retained without the need
for dark energy through this ‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction
from structure causes a(t) to deviate at all from the solution
of (1)? We can address this in the context of Newtonian grav-
ity. This is relevant because Newtonian gravity should pro-
vide a very accurate description of the local universe since
all velocities – Hubble and peculiar – are small. And it is in
the relatively local universe that the current expansion rate
– a problem for matter dominated cosmology in the con-
ventional framework – is measured. Also, the absolute value
of the curvature radius, which is arguably a non-Newtonian
construct and which may be identified with a is not relevant
here. The absolute value of a drops out of the equations
above. All that appears is the expansion rate ȧ/a and how
a(t) changes with time. In a homogeneous model these are
determined locally. The question of how inhomogeneity af-
fects the expansion is more complex, but it would be bizarre
indeed if the expansion rate of the local universe were af-
fected by the emergence of structure in the distant universe.
So if backreaction is at all important it should be revealed
in a Newtonian analysis.

We will now show that, despite the apparently ques-
tionable assumption of homogeneity in (1), the system of
equations (1-3) is actually precisely equvalent to the New-
tonian equations of motion.

For N particles of mass m interacting under their mu-
tual gravitational attraction there are 3N second order dif-
ferential equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|
3
. (5)

These may be solved numerically provided initial positions
ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|
3
�

ä

a
xi. (6)

What we are interested in is the motion of particles with
initial conditions that are close to being in uniform Hubble
expansion with some initial expansion rate H0 (very close
if we start at early times). So we might lay down parti-
cles on a regular grid in r-space within some large spherical
boundary centred on the origin and give the particles small
displacements �r and velocities ṙ = H0r+ �ṙ with ‘peculiar’
velocities �ṙ chosen to excite the growing mode. The corre-
sponding initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H0 � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth
order’ acceleration that, in the limit that the grid spacing
becomes very small, is the same as the gravitational acceler-
ation of a uniform density sphere, which grows linearly with
xi, plus a perturbation determined by the displacements
from the grid (we may think of the source of the gravity
being that of the unperturbed grid of particles plus that of
a set of dipole sources). If we define the number density of
particles in x-space n(x) ⌘

P
i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations
(6) become

ẍi + 2
ȧ

a
ẋi�

Gm

a3

Z
d
3
x �n(x)

x� xi

|x� xi|
3

= �

✓
ä

a
+

4⇡Gmn

3a3

◆
xi.

(8)

It is interesting to compare this with the conventional
equations. Those are 3N + 1 equations (3 per particle plus
the Friedmann equation for a) whereas here we have only
3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is
such that the RHS of (8) vanishes – i.e. that a(t) is a solution
of (1) – in which case the vanishing of the LHS is equivalent
to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be
ȧ/a = H0 then we see from the second of (7) that ẋ = �ṙ/a;
the initial velocity in x-space is a pure perturbation with no
Hubble-flow component.

We thereby recover the original conventional system of
equations, in which there is no feedback (or ‘backreaction’)
from the structure equations on the expansion. But this is
no longer open to the challenge that (1) is only an approxi-
mation. Equation (8), is precisely equivalent to (5), and we
are simply using the freedom in choice of a(t) to impose (1)
as an identity.

Alternatively, if one does not to require this one obtains
modified ‘structure’ equations with a large-scale radial ac-
celeration that would drive a zeroth order Hubble-like flow
to compensate. The results for physical quantities such as
positions, velocities, density etc. however are all invariant
with respect to the choice of a(t).

2 DISCUSSION

We have tried to clarify the meaning of the conventional
equations of Newtonian cosmology. We have expressed the
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2016; and has been widely discussed in reviews of backreac-

tion.

In a similar vein, Racz et al. (2017) have proposed that

the successes of the ⇤CDM concordance cosmology can be

obtained without the need for dark energy. They say ‘Cos-

mological N-body simulations integrate Newtonian dynam-

ics with a changing GR metric that is calculated from av-

eraged quantities.’ but that ‘There is a choice in how the

averaging is done.’ They propose to maintain equations (2)

and (3) but obtain a(t) by averaging the local expansion rate

ȧ/a computed from the local density under some simplify-

ing assumptions and then using this to update a(t) at each

time-step. Performing N-body calculations using this algo-

rithm and with matter only they find a(t) very similar to the

solution of the Friedmann equation in ⇤CDM. They argue

that the successes of the concordance cosmology can thereby

be retained without the need for dark energy through this

‘strong backreaction’ e↵ect.

But is it really legitimate to assume that backreaction

from structure causes a(t) to deviate at all from the solu-

tion of (1)? We can address this in the context of New-

tonian gravity. This is relevant because Newtonian gravity

should provide a very accurate description of the local uni-

verse since all velocities – Hubble and peculiar – are small.

And it is in the relatively local universe that the current

expansion rate – a problem for matter dominated cosmol-

ogy in the conventional framework – is measured. Also, the

absolute value of the curvature radius, which is arguably a

non-Newtonian construct and which may be identified with

a, is not relevant here. The absolute value of a drops out

of the equations above. All that appears is the expansion

rate ȧ/a and how a(t) changes with time. In a homogeneous

model these are determined locally. The question of how in-

homogeneity a↵ects the expansion might seem to be more

complex, but it would be bizarre indeed if the expansion

rate of the local universe were a↵ected by the emergence of

structure in the distant universe. So if backreaction is at all

important it should be revealed in a Newtonian analysis.

We will now show that, despite the apparently ques-

tionable assumption of homogeneity in (1), the system of

equations (1-3) is actually precisely equvalent to the full

Newtonian equations of motion.

2 NEWTONIAN COSMOLOGY IN SCALED

COORDINATES

For N particles of mass m interacting under their mutual

gravitational attraction there are 3N second order di↵eren-

tial equations

r̈i = Gm

X

j 6=i

rj � ri

|rj � ri|3
. (5)

These may be solved numerically provided initial positions

ri and velocities ṙi for the particles.

Writing this in terms of arbitrarily re-scaled coordinates

r = a(t)x, so ṙ = ȧx+aẋ and r̈ = äx+2ȧẋ+aẍ, (5) becomes

ẍi + 2
ȧ

a
ẋi =

Gm

a3

X

j 6=i

xj � xi

|xj � xi|3
� ä

a
xi. (6)

What we are interested in is the motion of particles with

initial conditions that are close to being in uniform Hubble

expansion with some initial expansion rate H (very close if

we start at early times). So we might lay down particles on a

regular grid in r-space within some large spherical boundary

centred on the origin and give the particles small displace-

ments �r and velocities ṙ = Hr+�ṙ with ‘peculiar’ velocities

�ṙ chosen to excite the growing mode. The corresponding

initial conditions in terms of x-coordinates are

x = r/a and ẋ = ((H � ȧ/a)r+ �ṙ)/a. (7)

The sum in (6) will have two components: A ‘zeroth

order’ acceleration that, in the limit that the grid spacing

becomes very small, is the same as the gravitational acceler-

ation of a uniform density sphere, which grows linearly with

xi, plus a perturbation determined by the displacements

from the grid (we may think of the source of the gravity

being that of the unperturbed grid of particles plus that of

a set of dipole sources). If we define the number density of

particles in x-space n(x) ⌘
P

i �(x�xi) and �n ⌘ n�n with

n the inverse of the grid cell volume in x-space, equations

(6) become

ẍi + 2
ȧ

a
ẋi�

Gm

a3

Z
d
3
x �n(x)

x� xi

|x� xi|3

= �
✓
ä

a
+

4⇡Gmn

3a3

◆
xi.

(8)

It is interesting to compare this with the conventional

equations. Those are 3N + 1 equations (3 per particle plus

the Friedmann equation for a) whereas here we have only

3N equations, just as in (5).

But since a(t) is arbitrary we may assert that a(t) is

such that the RHS of (8) vanishes – i.e. that a(t) is a solution

of (1) – in which case the vanishing of the LHS is equivalent

to the conventional structure equations (2) and (3).

Moreover, if we set the initial conditions for (1) to be

ȧ/a = H then we see from the second of (7) that ẋ = �ṙ/a;

the initial velocity in x-space is a pure perturbation with no

Hubble-flow component.

We thereby recover the original conventional system of

equations, in which there is no feedback (or ‘backreaction’)

from the structure equations on the expansion. But this is

no longer open to the challenge that (1) is only an approx-

imation. Equation (8) is precisely equivalent to (5); we are

simply using the freedom in choice of a(t) to impose (1) as

an identity.

Alternatively, if one does not require (1) one obtains

modified ‘structure’ equations with a large-scale radial ac-

celeration that would drive a Hubble-like flow to compen-

sate. The results for all physical quantities such as positions,

velocities, density etc. however are all invariant with respect

to the choice of a(t).

3 DISCUSSION

We have tried to clarify the meaning of the conventional

equations of Newtonian cosmology. We have expressed the

usual Newtonian equations (5) in terms of re-scaled (or what

cosmologists call ‘comoving’) coordinates x to obtain (8).

But in these equations the scale factor a(t) is completely

arbitrary and has no physical impact so there is no dynami-

cal equation that a(t) must obey. This reflects the fact that

the universe we live in can, if one so wishes, be considered
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Part 1: summary/conclusions

• A different perspective on the conventional equations for 
structure growth (Dmietriev & Zel'dovich '63) 

• fully non-linear & exact (but Newtonian) description 

• a(t) is arbitrary, but extra terms appear in equations of 
motion if a(t) does not obey Friedmann's equation 

• physical quantities invariant under choice of a(t) 

• No coupling of expansion to internal structure via tidal 
torques 

• can also be understood from scaling with radius/mass



Relation to Buchert & Ehlers '97 "kinematic BR"
• Matter modelled as pressure-free Newtonian fluid 

• unrealistic, but maybe a useful "toy model" 

• Consider a specific volume V = a3 containing mass M 

• Raychaudhuri equation (expansion θ, vorticity ω, shear σ) 

• a''/a + (4π/3) GM/a3 = Q 

• with Q = 2(<θ2> - <θ>2)/3 + 2<ω2-σ2> 

• 2nd order - no linear effect! 

• Naively a big effect (individual terms in Q ~ Gρ) 

• but...



Buchert & Ehlers '97
• "Generalised Friedmann equation": a''/a + GM/a3 = Q 

• Q = 2(<θ2> - <θ>2)/3 + 2<ω2-σ2> 

• Q=0 is "conspiracy assumption" 

• But "Q is a divergence": Q = V-1∫dA.(u(∇.u)-(u.∇)u) 

• so no global effect for periodic BCs - "by construction" 

• No surprise that a''/a ≠ -GM/a3 for an individual region 

• fluctuations affect acceleration a'' and M 

• but local, not "backreaction of δρ on global expansion" 

• If <Q>V→∞ != 0 would imply a conflict - this is not the case



Do B&E claim Newtonian backreaction?
• Q = 0 requires "conspiracy" - but "the average motion may be 

approximately given by the Friedmann equation on a scale 
which is larger than the largest existing inhomogeneities" 

• Later works: E.g. Buchert & Rasanen 2011 review 

• "..linear theory ... effect vanishes by construction ... in 
Newtonian ... true also in non-perturbative regime" 

• "When we impose periodic BCs .... Q is strictly zero" 

• but "If backreaction is substantial then current Newtonian 
simulations (and analytic studies) are inapplicable”. 

• So the absence of backreaction is a consequence of 
assuming (falsely, one presumes) periodicity. 

• How big is Q in reality?



How large is Q = (3 a''/a + 4πGM/a^3)?

• Q = Q1 + Q2 = V-1∫dA.(u(∇.u)-(u.∇)u) - (3/2V2)(∫dA.u)2 

• u is peculiar velocity wrt global H 

• If structure is a stat. homog. and isotropic random 
process (i.e. random vector field) 

• <u(∇.u)-(u.∇)u>ensemble = 0  (Monin and Iaglom, 1975) 

• so Q1 is pure fluctuation 

• |Q1| ~ <u2>/r2      independent of coherence length λ 

• Second term is systematic: Q2 ~ <u2> λ2 / r4 

• Both are very small (<< H2) for large V



Is there relativistic backreaction?

• Claims: "GR backreaction" is non-zero - and large 

• But local universe should be accurately Newtonian 

• errors ~ v2/c2 → ~1% accuracy within z = 0.1 

• and that's where we measure H0 

• so very hard to believe there are >> 1% effects 

• Q: Are there even very small effects on expansion history 
coming from non-relativistic effects?



Is there relativistic backreaction?
• Averaging of Einstein equations: G = T

• FRW: metric g -> G and T = diag(ρ, P, P, P) are diagonal 

• G = T and ∇.T = 0 -> Friedmann equations 

• with inhomogeneity < G > = < T >? 

• "averaging problem" widely discussed in BR literature 

• what about internal pressure P of clusters? 

• or internal pressure in stars, other compact objects 

• Do those give Friedmann equations with non-zero P? 

• and hence deviation from Newtonian expansion law?



Averaging of Einstein equations: < G > = < T >?

• Consider e.g. stars with internal pressure P 

• does that give Friedmann equations with non-zero P? 

• No. Stars have Schwarzschild exterior with mass m 

• space integral of the stress pseudo-tensor 

• includes rest mass, motions, P, binding energy 

• but is independent of time 

• Conservation of stars implies ρ ~ a-3 

• which demands P = 0 in the Friedmann equations



Relativistic BR from large-scale structure?
• Einstein-Straus '45 

• "What is the effect of 
expansion of space" 

• -> Swiss-cheese 

• Fully non-linear 

• Interesting pertn to 
e.g. proper mass 

• but background 
expansion is exactly 
unperturbed 

• small effects on D(z)



Backreaction from inter-galactic pressure
• Stars & DM ejected from galaxies by merging SMBHs 

• intergalactic pressure P = n m σv2 

• and P in the background of GWs emitted 

• Homogeneous (in conformal coords) pressure is a flux of 
energy with non-zero divergence in real space 

• 1st law ... PdV work .... : ρ' = - (ρ+P/c2) V' / V 

• but a very small effect 

• relies on pressure being extended throughout space 

• no effect from internal pressure in bound systems that 
are surrounded by empty space 



Summary

• A different perspective on the DZ equations. There is no 
dynamical equation for a(t). a(t) is arbitrary.  But there is 
no freedom to modify F-equation w/o changing structure 
eqs. Conventional system of equations is exact. 

• Clarification of "generalised Friedmann equation". Periodic 
BCs is not the issue. |Q1| ~ <v2>/r2 and <Q1> = 0 (Monin 
and Iaglom). <Q2> ~ <v2>λ2/r4. Both are v. small and tend 
to zero for large r.  

• Discussion of relativistic backreaction.  Averaging of 
stress-energy for systems with internal pressure does not 
introduce non-zero P in Freidmann equations. Exact non-
linear solutions show no backreaction. Intergalactic P 
does backreact, but P is weak and positive.


