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The scope of modern cosmology

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern
400,000 yrs.

Inflation

Quar

Dark Ages Development of

Galaxies, Planets, etc.

Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion

1

13.7 billion years



Preamble

Modern cosmology: an exercise in hubris

« <80’s - “missing mass” (since 30-s) - CMB - hot-big-bang model -
BBN - non-baryon DM - framework: search for 2 numbers

« 75-82 - (GUT) inflation + fluctuogenesis -> CDM model

« 80’s, 90’s growing problems - age, bias, cluster evolution, flatness from
CMB, lack of decelleration .... late time inflation - quintessence (or /\)

ACDM: Remarka

« Cosmology 1s t

bly successtul

ne search for 6 numbers?

 but needs inflaton, DM, quintessence - who ordered those?

Early universe looks in good shape, but maybe the DE (and DM + other
coincidences?) 1s telling us we are doing something wrong

* Modified gravity?

* Conventional gravity but misinterpreted (this meeting)



Outline

* Does lensing by structure bias the distance-redshift relation?
» Backreaction bias in the Hubble diagram

* Some challenges for backreaction



Context: cosmological parameters from the CMB
It 1s usually assumed that we are looking here at a

spherical surface at z~1100 with D = Dy(z=1100)
But are we?
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How far away is the CMB?
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Hubble diagram from SN1a - assumes no flux bias from lensing
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Outline of talk

« Some preliminaries
- what do we mean by distance in cosmology?
« basics of gravitational lensing - light deflection, shear & magnification
- Historical review:
« Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder
« things look fainter in an inhomogeneous universe
« Weinberg '76 -
 no effect (flux conservation)
« Schneider et al. ('84..'94): magnification and focusing theorems
« things look brighter
- significant others .... recent studies
« NK + John Peacock MNRAS2016

« we reconcile the above, apparently contradictory, results



What do we mean by "distance" 1n cosmology

* Locally - directly measure distances:
 radar echoes - parallaxes
* Not useful in cosmology. Instead we have:
* redshift (reflects change 1n size of the Universe)

* conformal' or comoving' distance 7 - appears 1n metric

- angular diameter distance: O =d / Da
* luminosity distance: F=1L/ (4 wDr2)

» apparent distances of "standard candles" or "measuring rods"
» This talk: Lensing magnifies or de-magnifies: changes Da Dy

* they become random functions of direction
* Q: does structure bias angular sizes or flux densities?

* if it does then we will get the wrong cosmological parameters



Optical properties of a lumpy universe

Homogeneous universe: metric: ds? = -dt2 + a2(t)(dx? + dy? + dz?)

* a(t) obeys Friedmann's equations

* x1s "conformal" coordinate (galaxies have fixed Xx)

Lumpiness: ds? =-(1 + 2 ¢(x)) dt2 + a2(t)(1 - 2 ¢(x))(dx2 + dy? + dz2)

*  ((x) determined by density fluctuations 09(x) (Poisson's equation)
* very good approximation because velocities are slow

Light rays are null paths (ds = 0)

Same as light rays in "lumpy glass" with inhomogeneous n(x)
» effective refractive index n(x) = (1 - 2 ¢(x) / ¢?)

* n(x) = (coordinate speed of light)-!
» Snell's law: Deflection Oger ~ ¢ / c2~ GOM /1 ¢2






basics of gravitational lensing: At, deflection

+ Gravitational time delay (Shapiro '65): At =2 | d\ ®/c2

» A = distance: ® = gravitational field from Ap/Q
« measured 1n "strong lensing" - multiple images of quasars

- fundamental concept (see Blandford & Narayan '86)

. Light deflection 0; ~ | dAV®/c2 ~ GM/bc2 ~ (HMc)2A

« cumulative deflection 1s a "random walk"
* 0 ~NI120;~(HMc)32A
« A=AQ/p~E2~1/N

* 0 dominated by "supercluster" scale structure (~30 Mpc)
» quite large ~ few arc-minutes ~ 10-3 radians at high z

* but (usually) not directly observable



basics of lensing: At, O4er + magnification & shear

+ Time delay At=2 | d\ ®/c

 Light deflection - cumulative deflection 6 ~ N2 8; ~ (HA/c)32A

« 0 dominated by large scale structure (~30 Mpc)

« Weak lensing: observe the gradient of the deflection angle

« described by a 2x2 image distortion tensor

 trace: ® (kappa) — magnification (changes size of objects)
2 other components: v — image shear (changes shapes)

* ~1% at ~ degree scales for sources at z ~ 1 (few % @ z=1000)
* but grows with decreasing angular scale

« potentially very large effects from small-scale lumpiness
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OBSERVATIONS IN A UNIVERSE HOMOGENEOUS IN THE MEAN

Ya. B. | Zel’dovich

Translated from Astronomicheskii Zhurnal, Vol. 41, No. 1,

pp. 19-24, January-February, 1964

Original article submitted June 12, 1963

A local nonuniformity of density due to the concentration of matter of the universe into separate

galaxies produces a significant change in the angular dimensions and luminosity of distant ob-
jects as compared to the formulas for the Friedman model.

The propagation of light in a homogeneous and
isotropic model of the expanding universe (irst
studied by A. A. Friedman) has been investigated
in a number of papers [1, 2, 3].

In these papers expressions wereobtained for
the observed angular diameter ® and the observed
brightness of an object with a known absolute diam-
eter and absolute brightness as a function of the dis-
tance or, strictly speaking, the red shift of the ob-
ject A = (wy — w) /wy.

In particular, there is a remarkable feature
in the function ®(A), namely, the presence of a
minimum when A is approximately equal to 1/2.
Formula (10) and Fig. 6 in the appendix show the
variation of the function f(A) =rH/c® which is in-
versely proportional to ® for a given density of mat-
ter. Here r is the radius of the object, His Hubble's

Fig. 2.

A mass situated between these rays bends the
latter in such a way that ® is increased (Fig. 2).
What we have in mind is the bending of light rays
by the gravitational field predicted by Einstein; this
bending amounts to 1.75" for a light ray passing
near the limb of the solar disc and has been con-
firmed by observation.




ON THE PROPAGATION OF LIGHT IN INHOMOGENEOUS
" COSMOLOGIES. I. MEAN EFFECTS

James E. GUNN

~_ ifornia Institute of Technology and Jet Propulsion Laboratory
A Received February 23, 1967 revised May 23, 1967

ABSTRACT

The statlstlcal effects of local inhomogeneities on the propagation of light are investigated, and
deviations (including rms fluctuations) from the idealized behavior in homogeneous universes are in-
vestigated by a perturbation-theoretic approach. The effect discussed by Feynman and recently by
Bertotti of the density of the intergalactic medium being systematically lower than the mean mass
density is examined, and expressions for the effect valid at all redshifts are derived.

I. INTRODUCTION

In an unpublished colloquium given at the California Institute of Technology in
1964, Feynman discussed the effect on observed angular diameters of distant objects
if the intergalactic medium has lower density than the mean mass density, as would
be the case if a significant fraction of the total mass were contained in galaxies. It is
an obvious extension of the existence of this effect that luminosities will also be affected,
though this was apparently not realized at the time. This realization prompted the
conviction that the effect of known kinds of deviations of the real Universe from the
homogeneous isotropic models (upon which predictions had been based in the past)
upon observable quantities like luminosity and angular diameter should be investigated.
The author (1967) has recently made such a study for angular diameters; the present
work deals primarily with mean statistical effects upon luminosity. A third paper will
deal with possible extreme effects one may expect to encounter more rarely. Some of
the results discussed here have been discussed independently by Bertotti (1966) and
Zel’dovich (1965).



Kantowski '69

CORRECTIONS IN THE LUMINOSITY-REDSHIFT RELATIONS
OF THE HOMOGENEOUS FRIEDMANN MODELS

R. KANTOWSKI®

Southwest Center for Advanced Studies, Dallas, Texas
Received January 22, 1968, revised March 22, 1968

ABSTRACT

In this paper the bolometric luminosity-redshift relations of the Friedmann dust universes (A = 0)
are corrected for the presence of inhomogeneities. The “locally” inhomogeneous Swiss-cheese models
are used, and it is first shown that the introduction of clumps of matter into Friedmann models does not
significantly affect the R(z) or R(v) relations (Friedmann radius versus the redshift or affine parameter)
along a null ray. Then, by the use of the optical scalar equations, a linear third-order differential equation
is arrived at for the mean cross-sectional area of a light beam as a function of the affine parameter. This
differential equation is confirmed by rederiving its small redshift solution from an interesting geometrical
point of view. The geometrical argument is then extended to show that “mild” inhomogeneities of a
transparent type have no effect on the mean area of a light beam.
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Fi1c. 1.—Spacelike section of a typical Swiss-cheese universe




Dyer & Roeder '72

THE DISTANCE-REDSHIFT RELATION FOR UNIVERSES
WITH NO INTERGALACTIC MEDIUM

C. C. DYEr* AND R. C. ROEDERT

Kitt Peak National Observatory,i Tucson, Arizona
Recetved 1972 April 19

ABSTRACT

The distance-redshift relation is derived for model universes in which there is negligible intergalactic
matter and in which the line of sight to a distant object does not pass close to intervening galaxies. When
fitted to observations, this relation yields a higher value of gy than does a homogeneous model.
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F16. 1.—The dimming, relative to the homogeneous model, assuming that the beam passes far from
any intervening galaxies (Jlower curve) and assuming that the beam passes no closer than 2 kpc to the
center of galaxies similar to our own (upper curve).




Weinberg 1976 - no effect (flux conservation)
APPARENT LUMINOSITIES IN A LOCALLY INHOMOGENEOUS UNIVERSE

STEVEN WEINBERG

Center for Astrophysics, Harvard College Observatory and Smithsonian Astrophysical Observatory; and
Department of Physics, Harvard University
Received 1976 April 6, revised 1976 May 20

ABSTRACT

Apparent luminosities are considered in a locally inhomogeneous universe, with gravitational
deflection by individual clumps of matter taken into account. It is shown that as long as the clump
radii are sufficiently small, gravitational deflection by the clumps will produce the same average

effect as would be produced if the mass were spread out homogeneously. The conventional formulae
for luminosity distance as a function of redshift consequently remain valid, despite the presence

of any local inhomogeneities of less than galactic dimensions. For clumps of galactic size, the validity
of the conventional formulae depends on the selection procedure used and the redshift of the object
studied.

Subject headings: cosmology — galaxies: redshifts — gravitation




Weinberg's argument (that <magnification> = 1)

telescope
aperture



Lensing and caustic effects
on cosmological distances.

G. F. R. ErLuis!, B. A. BasserT!?, AND P. K. S. DUNSBY!

1 Department of Applied Mathematics, University of Cape Town,

Rondebosch 7700, Cape Town, South Africa.

2 International School for Advanced Studies, SISSA - ISAS
Via Beirut 2-4, 34014, Trieste, Italy.

December 4, 2013

Abstract

We consider the changes which occur in cosmological distances
due to the combined effects of some null geodesics passing through
low-density regions while others pass through lensing-induced caus-
tics. This combination of effects increases observed areas correspond-
ing to a given solid angle even when averaged over large angular scales,
through the additive effect of increases on all scales, but particularly
on micro-angular scales; however angular sizes will not be significantly
effected on large angular scales (when caustics occur, area distances
and angular-diameter distances no longer coincide). We compare our
results with other works on lensing, which claim there is no such ef-
fect, and explain why the effect will indeed occur in the (realistic)
situation where caustics due to lensing are significant. Whether or not
the effect is significant for number counts depends on the associated
angular scales and on the distribution of inhomogeneities in the uni-
verse. It could also possibly affect the spectrum of CBR anisotropies
on small angular scales, indeed caustics can induce a non-Gaussian
signature into the CMB at small scales and lead to stronger mixing of
anisotropies than occurs in weak lensing.

EBD '98

Figure 1: A lens L and resulting caustics on the past light cone C~(P)
(2-dimensional section of the full light cone), showing in particular the cross-
over line Lo and cusp lines L_1, L1 meeting at the conjugate point ). The
intersection of the past light cone with a surface of constant time defines
exterior segments C'~, C' of the light cone together with interior segments

Cl) 027 03'



Ellis, Bassett & Dunsby '98 critique of Weinberg 76
EDB98 make two points:

Weinberg assumes that which
1S to be proven

* we agree: W76 assumes
that the surface of constant
z around a source (or
observer) 1s a sphere

I\

Small scale strong lensing
causes the surface to be
folded over on itself so total
area greatly enhanced

* (uite possibly true

1|

Thus Weinberg's claim 1s
disproved

« we disagree: W76 still
applies if multiple images
are unresolved




Enter Schneider, Ehlers, Seitz etc... ('80s, '90s)

 Two consistent threads:
* Lens equation:

» at least one 1image 1s made brighter
« Optical scalar equations (Sachs 1961):
« -> focusing theorem (Seitz et al. 1994)

« Things viewed through 'clumpiness' are further
than they appear...



Seitz, Schneider & Ehlers (1994)

Finally, we have derived an equation for the size of a light beam in a clumpy universe,
relative to the size of a beam which is unaffected by the matter inhomogeneities. If we
require that this second-order differential equation contains only the contribution by
matter clumps as source term, the independent variable is uniquely defined and agrees
with the y-function previously introduced [see SEF, eq. (4.68)] for other reasons. This
relative focusing equation immediately yields the result that a light beam cannot be less

focused than a reference beam which is unaffected by matter inhomogeneities, prior to
the propagation through its first conjugate point. In other words, no source can appear

fainter to the observer than in the case that there are no matter inhomogeneities close

to the line-of-sight to this source, a result previously demonstrated for the case of one
(Schneider 1984) and several (Paper I, Seitz & Schneider 1994) lens planes.




Seitz, Schneider & Ehlers 94

1992). Taking a somewhat different approach, Seitz, Schnei-
der & Ehlers (1994) have used the optical scalars formalism
of Sachs (1961) to show that the square root of the proper
area of a narrow bundle of rays D = v/ A obeys the ‘focusing
equation’:

D/D=—(R+X?). (1)

Here D is the second derivative of D with respect to affine
distance along the bundle; R = R,sk®k” /2 is the local Ricci
focusing from matter in the beam, which for non-relativistic
velocities is just proportional to the matter density; and
32 is the squared rate of shear from the integrated effect
of up-beam Weyl focusing — i.e. the tidal field of matter
outside the beam. The resulting focusing theorem is that the
RHS of (1) is non-positive, so that beams are always focused
to smaller sizes, at least as compared to empty space-time,




More on the focusing theorem: D/D = —(R+%7)
Derived from Sachs '61 "optical scalars”
from A.K. Raychaudhuri's equation
* transport of expansion, vorticity and shear
R = Rapk?kb local effect of matter in beam
222 1s the cumulative effect of matter outside the beam
- 2 being the rate of image shearing
Like cosmological acceleration equation:
« d2a/dt? = - 4nG(p+3P/c?)a
* 5o 2?here plays the role of pressure!
Also recalls Hawking-Ellis singularity theorem
* both terms are positive => focusing
e.g. Narlikar (Introduction to Relativity):
* "Thus the normal tendency of matter

* is to focus light rays"




Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context o
spacetime singularity by A. K,
Raychaudhuri.

Narlikar on the focusing theorem

The Raychaudhuri equation can be stated in a slightly different form
as a focussing theorem. In this form it describes the effect of gravity
on a bundle of null geodesics spanning a finite cross section. Denoting
the cross section by A, we write the equation of the surface spanning
the geodesics as /= constant. Define the normal 1o the cross-sectional
surface by &, = df/dx". Figure 18.3 shows the geometry of the bundle.

Using a calculation similar to that which led to the geodetic deviation
equation in Chapter 5, we get the focussing equation as
| Va4 1

75 e = 5 RuKK" = Jal’, (18.10)

Equation (18.10) i1s similar to the Raychaudhur equation with lor |

being the square of the magnitude of shear. With Einstein’s equations,
we can rewrite (18.10) as

| &*JSA
JA di?

For dust we have T;,, = pu,u,, and this condition is satisficd with
the left-hand side equalling p(u, 4" ). (Remember that &; is a null vector,
50 Limk'k™ = 0.) Thus the normal tendency of matter is to focus light
rays by gravity,

| .
= -47G (r -3 ',,,T) K — ol (18.12)

-



even more on the focusing theorem:  H/D = —(R + ¥?)

What's going on? This seems to conflict with Weinberg!

Schneider et al are adding lenses - not redistributing matter

* Does this explain the apparent conflict with flux conservation?

No. Let D = Do + D; + ... take the average .... and linearise,

o o1ves averaged focusing theorem g
5 ged ] 5 (D)/Dy = —(X?) < 0.

So there 1s a tendency for structure to focus beams

decrease of distance - qualitatively as found by Clarkson et al. 2014

« 1.e.a big - and possibly even divergent - effect!

So Weinberg was wrong?



GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON METCALF AND JOSEPH SILK
Departments of Physics and Astronomy and Center for Particle Astrophysics, University of California, Berkeley, Berkeley, CA 84720
Received 1996 November 6 ; accepted 1997 June 12

ABSTRACT

Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing
causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond /7 ~ 2000. We also find that lensing produces a nonzero mean magnification of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magnification
has a negligible affect on the CMB power spectrum. A new expression for the lensed power spectrum 1s
derived, and 1t 1s found that Tuture precision observations of the high-/ tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.

Subject headings: cosmic microwave background — gravitational lensing




GRAVITATIONAL MAGNIFICATION OF THE COSMIC MICROWAVE BACKGROUND

R. BENTON METCALF AND JOSEPH SILK
Departments of Physics and Astronomy and Center for Particle Astrophysics, University of California, Berkeley, Berkeley, CA 84720
Received 1996 November 6; accepted 1997 June 12

ABSTRACT

Some aspects of gravitational lensing by large-scale structure are investigated. We show that lensing
causes the damping tail of the cosmic microwave background (CMB) power spectrum to fall less rapidly
with decreasing angular scale than previously expected. This is because of a transfer of power from
larger to smaller angular scales, which produces a fractional change in power spectrum that increases
rapidly beyond 7 ~ 2000. We also find that lensing produces a nonzero mean magnification of structures
on surfaces of constant redshift if weighted by area on the sky. This is a result of the fact that light rays
that are evenly distributed on the sky oversample overdense regions. However, this mean magnification
has a negligible affect on the CMB power spectrum. A new expression for the lensed power spectrum 1s
derived, and 1t 1s found that Tuture precision observations of the high-/ tail of the power spectrum will
need to take lensing into account when determining cosmological parameters.

Subject headings: cosmic microwave background — gravitational lensing
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Kibble & Lieu (2005)

AVERAGE MAGNIFICATION EFFECT OF CLUMPING OF MATTER

T. W. B. KiBBLE
Blackett Laboratory, Imperial College, London SW7 2AZ, UK; kibble@imperial.ac.uk

AND

RicHARD LIEU
Department of Physics, University of Alabama at Huntsville, Huntsville, AL 35899; lieur@cspar.uah.edu

Received 2004 December 9, accepted 2005 June 20

ABSTRACT

The aim of this paper is to reexamine the question of the average magnification in a universe with some inhomoge-
neously distributed matter. We present an analytic proof, valid under rather general conditions, including clumps of
any shape and size and strong lensing, that as long as the clumps are uncorrelated, the average “‘reciprocal” magnifica-
tion (in one of several possible senses) 1s precisely the same as in a homogeneous universe with an equal mean density.
From this result, we also show that a similar statement can be made about one definition of the average “direct” mag-
nification. We discuss, in the context of observations of discrete and extended sources, the physical significance of the
various different measures of magnification and the circumstances in which they are appropriate.

Subject headings: cosmology: miscellaneous — distance scale — galaxies: distances and redshifts —
oravitational lensing



Kibble & Lieu 2005

There 1s another important distinction to be made. We may
choose at random one of the sources at redshift z, or we may
choose a random direction in the sky and look for sources there.
These are not the same; the choices are differently weighted. If
one part of the sky 1s more magnified, or at a closer angular-size
distance, the corresponding area of the constant-z surface will
be smaller, so fewer sources are likely to be found there. In other
words, choosing a source atrandom will give on average a smaller
magnification or larger angular-size distance.

« Weinberg: <u> =1 when averaged over sources
» Kibble & Lieu: <1/u> =1 when averaged over directions on the sky
- latter 1s more relevant for CMB observations

« strictly only valid in weak lensing regime



Recap of historical review
Zel'dovich '63 .... Feynman & Gunn .... Kantowski ... Dyer & Roeder

* structure makes things look fainter on average
Weinberg "76 - no effect for transparent lenses (flux conservation)
Schneider et al. ('84..'94) (from Raychaudhuri, Sachs, Narlikar):

* magnification and focusing theorems

* structure makes things look nearer (1.e. brighter)- a big effect
Ellis, Bassett & Dunsby '97 - critique of Weinberg '76

Metcalf and Silk '97: negligible (O(02) ~ 10-%) effect on the CMB

Kibble & Lieu '05 - distinguished between source and direction averages
* Weinberg: <u> = 1 averaged over sources (or area on source sphere)
* K+L: <1/u> =1 when averaged over directions (as e.g. for CMB)
Outstanding questions:
* How do we make sense of these apparently conflicting results?

* What is the relation to recent results from 2nd order Pertt Theory?



Recent developments...

Backreaction: "have cosmologists erred in failing to take into account the
inherent non-linearity of Einstein's equations?"

« cosmologists tend to do linear theory calculations

 but Einstein's equations (metric <-> matter) are non-linear

 averaging and non-linearity "do not commute"

« SO 1S dark energy a mirage’

requires calculations 1n 2nd order perturbation theory (v. technical)
now mostly accepted that effects are too small to explain acceleration
but maybe there are still interesting percent level effects:

« Clarkson, Ellis++ '12 - large (O(%2)) source magnification

« Clarkson++ '14 - similarly large z-surface area increase
« violates Weinberg's assumption
 "backreaction" strikes back?

« and the size of the effect 1s qualitatively consistent with expectation of the
focusing theorem (Seitz, Schneider & Ehlers)
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What is the distance to the CMB?
How relativistic corrections remove the tension with local H;, measurements

Chris Clarkson!, Obinna Umeh?, Roy Maartens?® and Ruth Durrer?

L Astrophysics, Cosmology & Gravity Centre, and, Department of Mathematics &
Applied Mathematics, University of Cape Town, Cape Town 7701, South Africa.
2 Physics Department, University of the Western Cape, Cape Town 7535, South Africa
3 Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, United Kingdom
* Département de Physique Théorique & Center for Astroparticle Physics,
Université de Geneve, Quai E. Ansermet 24, CH-1211 Geneéeve 4, Switzerland.

The success of precision cosmology depends not only on accurate observations, but also on the the-
oretical model — which must be understood to at least the same level of precision. Subtle relativistic
effects can lead to biased measurements if they are neglected. One such effect gives a systematic
shift in the distance-redshift relation away from its background value, due to the accumulation of all
possible lensing events. We estimate the expectation value of this aggregated lensing using second-
order perturbations about a concordance background, and show that the distance to last scattering
is shifted by several percent. Neglecting this shift leads to significant bias in the background cos-
mological parameters. We show that this removes the tension between local measurements of Hy
and those measured through the CMB and favours a closed universe.




Clarkson et al. 2014

(A) ~ g <<5§A)2> — g (K?) (1.5)

where k is the usual linear lensing convergence. This is actually the leading contribution
to the expected change to large distances. We prove this remarkably simple and important
result in a variety of ways in several appendices. It implies that the total area of a sphere of
constant redshift will be larger than in the background. Physically this is because a sphere
about us in redshift space is not a sphere in real space — lensing implies that this ‘sphere’
becomes significantly crumpled in real space, and hence has a larger area. When interpreted

-

~

4 Conclusions

We have demonstrated an important overall shift in the distance redshift relation when the
aggregate of all lensing events is considered, calculated by averaging over an ensemble of
universes. This result is a consequence of flux conservation at second-order in perturbation
theory. This is a purely relativistic effect with no Newtonian counterpart — and it is the first
quantitative prediction for a significant change to the background cosmology when averaging
over structure [21]. The extraordinary amplification of aggregated lensing comes mainly

from the integrated lensing of structure on scales in the range 1-100 Mpc, although structure
down to 10kpc scales contributes significantly. We have estimated the size of the effect using



NK + Peacock 2015

Weinberg assumes that the area of a surface of constant redshift 1s
unperturbed by lensing by intervening structures

* same assumption 1s made by Kibble & Lieu

« seems reasonable since static lenses do not atfect redshift

* and leads to conservation of e.g. source-averaged flux density
* but not strictly true and breaks down at some level

What is the change 1n the area of the constant-z surface (or cosmic
photosphere) caused by structure?



KP2013: closing the loophole in Weinberg’s argument

Surface of constant distance travelled

Surface of constant
cosmic time 1
l"

|

~ 5
T @ dA

1
\

Ao

2 effects:
wiggly lines don't get as far as straight lines
wrinkly surface has more area than a smooth one

but both effects are ~(bending angle)2 ~ 106



What 1s the area of a wavy surface?

Or a lumpy sphere?




Key features of KP15 calculation of area of photosphere

 Calculations are rather technical, some key features are:
*  Weak field assumption:
- we model the metric as weak field limit of GR
* but we allow for non-rel motion of sources
- these have negligible effects
- similarly for gravitational waves
- "photons can't surf a gravitational wave"
- going beyond 1st order can be estimated and is tiny effect
* the problem is isomorphic to light propagation in "lumpy glass"
* Boundary conditions:
 Perturbation theory calculations assume photosphere is constant z
« Not true. It is more realistically a surface of constant cosmic time
 Pert. theo. results may be qualitatively OK, but fail quantitatively

 Final result for perturbation to the area of the photosphere is
A0

(AAY /Ao = — [ dX (200 — A) + AD)J(A).  where

0

_ / _ 2 but J = d<62>/dA and JA 1s on the
= —8 / dy§¢(y)/y—2W/kA¢(k) dIlnk, order of 10-6

— o0



NK + Peacock 2015 - 2nd point

Perturbation to the area 1s on the order of the mean squared cumulative
deflection angle

This 1s a one-part-in-a-million effect
* dominated by large-scale structure

Relativistic perturbation theory, focussing theorem etc. give perturbation
to the distance that 1s on the order of the mean squared convergence

* much larger
- dominated by small-scale structure (possibly divergent)
All claims for large etfects are purely statistical effects:

* The mean flux magnification | of a source 1s unity
* SO <A!~L>source =0
« but p1s a fluctuating quantity

* so any non-linear function of w (e.g. D/Do =1/ Vv w) will not average to
unity



KP15: Statistical biases...

Example: Source averaged distance bias:

« DDo=pw!2=(1+Apy12=1-Ap/2+3(An>S + ...

e SO <D/DO>SQurce — 1 ~+ 3<(A!.L)2>/8 + ... = 1 ~+ 3<%2>/2 + ...

Similarly for source averaged mean inverse magnification

e <D2/DoZ>source =1 +4 <u2> + ...

These are precisely the results for the mean perturbation to the distance and
distance squared found by Clarkson et al. 2014

But e.g. the latter 1s not the perturbation to the constant z surface area
« that would be the average over directions rather than over sources

Similarly, Clarkson et al. 2012 claim mean source averaged flux magnification
IS<u>=1+<3Bn2+vy>+ ... =1+<du>+ ...

« but this is the direction averaged magnification

These come from non-commutativity of averaging and non-linearity

« <f(x)> !=1(<x>) 1f x 1s a fluctuating quantity

 and have nothing to do with the non-linearity of Einstein's equations



What about the "focusing theorem"? (D)/Do = —(%?) < 0.

« 2 lessons from foregoing:

. 1% The theorem applies to a bundle of rays fired
along a given direction

« 1.e.adirection - not source-averaged quantity
 and paths to sources avoid over-densities
 so care 1s needed 1n interpreting this

* 2) D 1s a non-linear function of A

* s0, because A 1s a fluctuation quantity, we
automatically expect a statistical bias in D

* and the size of the effect 1s ~ <u2>

 So 1s there a "normal tendency of matter to focus
light rays"?

* as inferred from the averaged focusing theorem

« or 1s this simply a statistical effect?

( A p

Fig. 18.3. The bundle of
geodesics focusses in the
future with its cross section A
decreasing to zero. This effect
was discussed in the context of
spacetime singularity by A. K.
Raychaudhuri,



KP15 on the "focusing theorem"? (D)/Do = —(%%) < 0.

We have developed the optical scalar transport equations in a form
appropriate when one wishes to specity the metric fluctuations as a
stochastic random field (with zero mean for k=0 component)

* interesting subtlety: one should not assume <OR> = (

* 1n inflationary context, small scale space-time curvature fluctuations have
to accommodate themselves within the (flat-space) boundary conditions
imposed when the larger regions accelerate outside of horizon

We have solved these to obtain the ensemble average of the perturbation to
the area of a beam of specified solid angle fired oft from the observer and
propagating back to the source surface.

We perform a double expansion, working to second order in 0(metric) and
to lowest order in the inverse of "coherence scale"/Hubble scale

Cancellation: Not just "Born level", but 1st "beyond Born" also

We were only able to solve for the case where metric fluctuations are non-
evolving (like in Einstein - de Sitter) but were able to obtain the "un-
focusing theorem": <AA/A>=-2JN3 + ...

- this 1s consistent with the more general result (variable J) found by more
straightforward approach.

An exactly analogous calculation for <AD/D> does not show cancellation
and results 1n much larger (O(#2)) result. But just the statistical bias. QED



Optical scalars (in weak-

r = V.n Geodesic equation
n o= [(1 - 26(r)/c*) /(1 + 2¢(r) /)]

Optical tensor transport equation:
K = (ViVk — KO )t — Vet Vit — K - K

Optical scalar transport equations:

S AYE . 2 2 2

> =({V.V.} —2o\)7n —{V.aV. 7} — 205
Solve for 6

The solution of A/2A4 = 6(\) = X\71 + Af(N) is
A
A=QNexp |2 / d\ AO(\)

0

field GR or lumpy glass)

Figure D1. Illustration of a bundle of rays (thin curves) and
associated wave-fronts (thick curves) and ray direction vectors
i = dr/d\ (arrows). The base of each arrow is labelled by distance
(physical for lumpy glass, background conformal for perturbed
FRW) along the path. Close to the guiding ray the ray vectors
will vary linearly with transverse displacement. The optical tensor
K is the derivative of the ray direction with respect to coordinates
x on the plane that is tangent to the wavefront at the location
of the guiding ray. The optical tensor transport equation tells us
how K evolves as the bundle propagates through any metric or
refractive index fluctuations. Since rays are perpendicular to the



Part I: Concluding comments....

« The problem of how lensing by cosmic structure affects the mean
distance-redshift relation (or the mean area of a surface of constant

redshift) goes bac

* Interesting pro

k for at least 50 years

blem....

* many people p!

ayed with it...

« potentially important for "precision cosmology" with SN1a and CMB

« A conflict arose 1in the '80s between Weinberg's flux conservation

argument and the

contrary indications from the focussing theorem

 This remained unresolved and resurfaced recently 1n results of relativistic
2nd order perturbation theory.



Part I: Concluding comments continued...

John Peacock and I have reconciled the conflicts

We support Weinberg:

« lensing affects individual source flux densities in a random way

* but averaged flux density of sources i1s almost exactly unperturbed
and pay tribute to Kibble and Lieu

- emphasised the distinction between source and direction averaging
Our main results:

« Relativistic studies have misinterpreted statistical biases.

* there is a bias 1n the area of constant z or photosphere surfaces - but it 1s
very, very small ~ 10-6

- we have shown that the celebrated "focusing theorem", despite 1ts name,
does not imply any 1intrinsic tendency for bundles of rays to be focused
as they wend their wiggly way through the lumpy cosmos

Implication: conventional methods for analysing the CMB & SN1a
(mostly) are valid.

ACDM lives to fight another day!



Part I:Backreaction 1ssues
Comments on Raychaudhuri:
* Powertul tool, but dangerous
* The 2nd order terms (shear?2 etc) depend on the “measure”
« Equation for D = sqrt(A) -> focussing theorem
« Equation for A -> non-focussing theorem
* Same 1s true for time-like geodesics

« Different “backreaction” terms (Buchert’s Qs) for different
measures.

* Need to carefully choose the appropriate measure (here A)
Setting up the physical model:
 For inflation need to model metric as background + perturbations

 Different result if you model curvature



Einstein-Straus '45

* "What is the effect of
expansion of space’

-> Swiss-cheese
Fully non-linear

Droper mass
perturbation does not
average to zero

Need to model metric
erturbations as zero
mean Process




2) Bias in Ho from 2nd order pert" theory



SCALE DEPENDENCE OF COSMOLOGICAL BACKREACTION
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PHYSICAL REVIEW D 78, 083531 (2008)

Scale dependence of cosmological backreaction

Nan Li* and Dominik J. Schwarz™

Fakultdt fiir Physik, Universitdt Bielefeld, Universitdtsstrafse 25, D-33615 Bielefeld, Germany
(Received 2 November 2007; published 23 October 2008)

Because of the noncommutation of spatial averaging and temporal evolution, inhomogeneities and
anisotropies (cosmic structures) influence the evolution of the averaged Universe via the cosmological
backreaction mechanism. We study the backreaction effect as a function of averaging scale in a
perturbative approach up to higher orders. We calculate the hierarchy of the critical scales, at which
10% effects show up from averaging at different orders. The dominant contribution comes from the
averaged spatial curvature, observable up to scales of ~200 Mpc. The cosmic variance of the local Hubble
rate 1s 10% (5%) for spherical regions of radius 40 (60) Mpc. We compare our result to the one from
Newtonian cosmology and Hubble Space Telescope Key Project data.
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ensemble mean
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FIG. 2 (color online). Relative fluctuation of the Hubble rate
from cosmological backreaction and its cosmic variance band
(thick lines) compared to the empirical mean and variance of dp
obtained from the HST Key Project data [5] as a function of
averaging radius. The thin line shows the ensemble mean of 6.
The band enclosed by the thick lines indicates the effect of the
inhomogeneities ( « 1/7?), and the dashed lines are the effect
from sampling with given measurement errors in an otherwise
perfectly homogeneous Universe.



PHYSICAL REVIEW D 80, 083525 (2009)
Influence of structure formation on the cosmic expansion

Chris Clarkson,* Kishore Ananda,” and Julien Larena®

Cosmology & Gravity Group, Department of Mathematics and Applied Mathematics, University of Cape Town,

Rondebosch 7701, Cape Town, South Africa
(Received 4 August 2009; published 23 October 2009)

We investigate the effect that the average backreaction of structure formation has on the dynamics of
the cosmological expansion, within the concordance model. Our approach in the Poisson gauge is fully
consistent up to second order in a perturbative expansion about a flat Friedmann background, including a
cosmological constant. We discuss the key length scales which are inherent in any averaging procedure of
this kind. We 1dentify an intrinsic homogeneity scale that arises from the averaging procedure, beyond
which a residual offset remains in the expansion rate and deceleration parameter. In the case of the
deceleration parameter, this can lead to a quite large increase in the value, and may therefore have
important ramifications for dark energy measurements, even if the underlying nature of dark energy is a
cosmological constant. We give the intrinsic variance that affects the value of the effective Hubble rate and
deceleration parameter. These considerations serve to add extra intrinsic errors to our determination of the
cosmological parameters, and, in particular, may render attempts to measure the Hubble constant to
percent precision overly optimistic.




The Hubble rate in averaged
cosmology
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Abstract. The calculation of the averaged Hubble expansion rate in an averaged perturbed

Friedmann-Lemaitre-Robertson-Walker cosmology leads to small corrections to the back-

ground value of the expansion rate, which could be important for measuring the Hubble

constant from local observations. It also predicts an intrinsic variance associated with the
finite scale of any measurement of Hy, the Hubble rate today. Both the mean Hubble rate
and its variance depend on both the definition of the Hubble rate and the spatial surface on
which the average is performed. We quantitatively study different definitions of the averaged
Hubble rate encountered in the literature by consistently calculating the backreaction effect
at second order in perturbation theory, and compare the results. We employ for the first
time a recently developed gauge-invariant definition of an averaged scalar. We also discuss
the variance of the Hubble rate for the different definitions.

Keywords: cosmic flows, cosmological perturbation theory, dark energy theory



The second-order luminosity-redshift
relation in a generic inhomogeneous
cosmology

Ido Ben-Dayan,*’ Giovanni Marozzi,”? Fabien Nugier® and
Gabriele Veneziano®/

Published November 22, 2012

Abstract. After recalling a general non-perturbative expression for the luminosity-redshift
relation holding in a recently proposed “geodesic light-cone” gauge, we show how it can
be transformed to phenomenologically more convenient gauges in which cosmological per-
turbation theory is better understood. We present, in particular, the complete result on
the luminosity-redshift relation in the Poisson gauge up to second order for a fairly generic
perturbed cosmology, assuming that appreciable vector and tensor perturbations are only
generated at second order. This relation provides a basic ingredient for the computation of
the effects of stochastic inhomogeneities on precision dark-energy cosmology whose results
we have anticipated in a recent letter. More generally, it can be used in connection with any
physical information carried by light-like signals traveling along our past light-cone.
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Backreaction on the
luminosity-redshift relation from gauge

invariant light-cone averaging

|. Ben-Dayan,*’ M. Gasperini,“’ G. Marozzi,” F. Nugier/ and
G. Veneziano®Y
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Figure 4. The distance-modulus difference of eq. (6.3) is plotted for a pure CDM model (thin line),
for a CDM model including the contribution of IBRy (dashed blue line) plus/minus the dispersion
(coloured region), and for a ACDM model with Q, = 0.73 (thick line) and Q5 = 0.1 (dashed-dot
thick line). We have used for all backreaction integrals the cut-off k = 1 Mpc™?.



Average and dispersion of the
luminosity-redshift relation in the

concordance model

l. Ben-Dayan,” M. Gasperini,’¢ G. Marozzi,”* F. Nugier/ and

G. Veneziano®9-"
0.1,

«— big effect at low-z ACDM
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Figure 6. The fractional correction to the flux (fe, thin curves) and to the luminosity distance ( fg,
thick curves), for a perturbed ACDM model with 29 = 0.73. Unlike in figure 3, we have taken
into account the non-linear contributions to the power spectrum given by the HaloFit model of [17]
(including baryons), and we have used the following cutoff values: kyy = 10h Mpe™' (dashed curves)

and kyy = 30h Mpce ™! (solid curves).
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Figure 7. The averaged distance modulus () — 4™ of eq. (3.6) (thick solid curve), and its dispersion
of eq. (3.9) (shaded region), for a perturbed ACDM model with Q¢ = 0.73. Unlike figure 4, we
have taken into account the non-linear contributions to the power spectrum given by the HaloF'it
model of [17] (including baryons), and used the cut-off kv = 30h Mpc™t. The averaged results are
compared with the homogeneous values of u predicted by unperturbed ACDM models with (from
bottom to top) Qa9 = 0.68, 0.69 0.71, 0.73, 0.75, 0.77, 0.78 (dashed curves). The right panel simply
provides a zoom of the same curves, plotted in the smaller redshift range 0.5 < z < 2.



week ending

PHYSICAL REVIEW LETTERS 11 JANUARY 2013

PRL 110, 021301 (2013)

Do Stochastic Inhomogeneities Affect Dark-Energy Precision Measurements?

I. Ben-Dayan,'* M. Gasperini,”* G. Marozzi,” F. Nugier,’ and G. Veneziano>’

The effect of a stochastic background of cosmological perturbations on the luminosity-redshift relation
1s computed to second order through a recently proposed covariant and gauge-invariant light-cone
averaging procedure. The resulting expressions are free from both ultraviolet and infrared divergences,
implying that such perturbations cannot mimic a sizable fraction of dark energy. Different averages are
estimated and depend on the particular function of the luminosity distance being averaged. The energy
flux being minimally affected by perturbations at large z 1s proposed as the best choice for precision
estimates of dark-energy parameters. Nonetheless, its irreducible (stochastic) variance induces statistical
errors on (), (z) typically lying in the few-percent range.
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FIG. 2. The fractional correction to the flux f¢ of Eq. (7) (thin
curves) is compared with the fractional correction to the lumi-
nosity distance f; of Eq. (13) (thick curves) for a ACDM model
with ), = 0.73. We have used two different cutoff values:
kyy = 0.1 Mpc™! (dashed curves) and kyy = 1 Mpc™! (solid
curves). The spectrum is the same as that of Fig. 1 adapted to
ACDM.

FIG. 3. The averaged distance modulus (u) — u™ (thick solid
curve) and its dispersion of Eq. (15) (shaded region) are com-
puted for ), = 0.73 and compared with the homogeneous value
for the unperturbed ACDM models with (), = 0.69, 0.71, 0.73,
0.75, 0.77 (dashed curves). We have used kyy = 1 Mpc~! and
the same spectrum as in Fig. 2.
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Value of H, in the Inhomogeneous Universe

Ido Ben—Dayan,1 Ruth Durrer,2 Giovanni Marozzi,2 and Dominik J. Schwarz’
'Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany
*Université de Genéve, Département de Physique Théorigue and CAP,

24 quai Ernest-Ansermet, CH-1211 Geneve 4, Switzerland
S Fakultdit fiir Physik, Universitdt Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(Received 5 February 2014; published 6 June 2014)

Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters or voids.
Here we present a fully relativistic treatment of this effect, studying how clustering modifies the mean
distance- (modulus-)redshift relation and its dispersion in a standard cold dark matter universe with a
cosmological constant. The best estimates of the local expansion rate stem from supernova observations at
small redshifts (0.01 < z < 0.1). It is interesting to compare these local measurements with global fits to
data from cosmic microwave background anisotropies. In particular, we argue that cosmic variance (i.e., the
effects of the local structure) is of the same order of magnitude as the current observational errors and must
be taken into account in local measurements of the Hubble expansion rate.

(d*)(z) = (d) 21+ fa(2)]. (4)

where for 7 < 1,

The brightness of supernovae is typically expressed in
terms of the distance modulus u. Because of the nonlinear
function relating ¢ and ®, one obtains different second
1 >2 order contributions,

((

1o)==, GO

— 2.5

W)= = =i [fo =5 (@8R ()

would nearly double the effect in Eq. (5). The dominant
peculiar velocity contribution at low redshift gives

140 =~ () T2 [ Fer, 0. ©

z)An H,

where at 7z < 1, we also find

<((I)1/‘I)0>2> =—4f5. (8)




Bias in Ho from 2nd order pert" theory

® Backreaction causes systematic bias in H measurement
® very large effects on DM??
® interesting bias in flux density, distance etc at low-z



Bias in Ho from 2nd order pert" theory

® Backreaction causes systematic bias in H measurement
® very large effects on DM??
® interesting bias in flux density, distance etc at low-z

® But isn’t this just the residual “homogeneous Malmquist bias” in
“inverse + type II” method?



Malmquist bias!?

® Obijects in a region of estimated distance space will have a
distance that is biased

® because of (large) uncertainty in distance
® But“Schechter’s method” largely avoids that
® don't measure velocity as a function of distance
® do it the other way round
® small scatter in distance for objects same redshift

® but not completely free from bias

® analysed by Lynden-Bell 92 and Willick & Strauss ‘97



DLB 92

Eddington—Malmquist Bias,
Streaming Motions, and the
Distribution of Galaxies

D. Lynden-Bell

ABSTRACT Schechter's method of eliminating Malmquist bias is reviewed
and presented in the context of the D, —o relationship for elliptical galaxies.
A Malmaquist-like correction occurs which is dependent on the dispersion
in the velocity field of galaxies; however, this correction does not increase
with distance so it is much less important than the normal Malmquist bias
that this method eliminates. The method is applied to a bulk flow model
of the ellipticals and gives almost identical results to those found using the
other reduction method which employs the Malmquist corrections. Ways
of using the method to model the density and velocity fields out to 10,000
km/sec are briefly indicated.

. m o mm e — = e — =
L= .

is already small.
Solving for R. we obtain the value Ry at which the maximum occurs

Rpm =1 {w + \/w? + 402 [3 + ) l;l(;;/:")] 1+ u’(u)]‘z} . (9.16)

Equations (9.16) and (9.15) constitute our solution for Rm. Notice that
when w >> gy, then

2 dl a
Rp=w {1 + E% [3 -+ Z(El/rv)] [1 4 HI(U)]-z} (9.17)




Willick et al 1997 (astro-ph vs Ap|)

2.2.2.  Further discussion of the vELMoD likelihood

The physical meaning of the vELmobp likelihood expressions is clarified by considering them in a suitable
limit. If we take o, to be “small,” in a sense to be made precise below, the integrals in Egs. (11) and (12) may
be approximated using standard techniques. If in addition we neglect sample selection (S = 1) and density
variations (n(r) = constant), and assume that the redshift-distance relation is single-valued, we find for the

forward relation: — |0 = 2%5

P(mln, cz) ~ \/iae exp{—zig (m— [M(n) +5logw + 11?OA2D2} | (15)

P(m|n, cz) ~ fa exp |[ 1 {m — [M(n) + Slogw+ 3 X% % Az:l}z]l , (15)

We thank Marc Davis, Carlos Frenk, and Amos Yahil for extensive discussions of various aspects of this project, as well as
the support of the entire Mark III team: David Burstein, Stéphane Courteau, and Sandra Faber. We also thank the referee,
Alan Dressler, for an insightful report that improved the quality of the paper. J. A. W. and M. A. S. are grateful for the

® KHI5:The“3” here comes from the standard formula for HMB.
® The right answer is |.5
® as found by the relativistic backreaction folks!



Why there I1Is no Newtonian
packreaction

arxiv:1703.08809



Conventional Framework for Cosmological Dynamics
* Homogeneous background with scale factor a(t)
e a'=-(411/3) G pp a (' = d/dt) Friedmann eg
o Structure (in e.g. N-body calc.) obeys
e X'+ 2(a'/a)x' + Vp /a2 =0 where
e X =r/a(t) are "conformal’ coords, and
e V2 =4 G (p - pp) a2
 No feedback (or "backreaction”) of p on evolution of a(t)
 G.F.R. Ellis (1984...): is this legitimate?

e explored by Buchert & Ehlers '97 plus many others



Racz et al 2017: Modified N-body calculations

* They assume the conventional structure equations:

1.0 ‘ ‘ ‘ : ‘ : : :

e X'+2(a/a)x +Vb/a2=0 o
V20 = 411 G (p - po) &

0.3

* but evolve a(t) accordingtoa -+ a+a'ét =/
t [Gy]

* with a' obtained by averaging local expansion:<a'/a>
INvoking "separate universe” approximation

o 'Strong backreaction" based on Newtonian physics

* Big effect: a(t) very similar to ACDM concordance model

* ‘concordance cosmology without dark energy’




Racz et al. world view

* 'N-body simulations integrate Newtonian dynamics with a
changing GR metric that is calculated from averaged
quantities”

* ‘changing GR metric". FRW metric: expansion factor a(t)
* a(t) comes from strong-field GR physics

 so we don't really understand it except in highly
idealised (e.g. homogeneous) situations

* hence legitimate to propose alternative ansatz”

e a(t) - the "expansion of space" - affects the small-scale
dynamics of structure



s it legitimate to modity the Friedmann equation?

* Does emergence of structure really "obackreact” on a(t)?

 Can address this in Newtonian gravity. Relevant as:

* Accurate description of the local universe (v << ¢)

* aside from effects from BHSs
* this is where we observe e.g. Ho = 70 km/s/Mpc!

* not Ho ~ 35 km/s/Mpc expected w/o dark energy, Qx
* Atz = 0.1 relativistic corrections ~ 0.01

* |f backreaction is important at > 1% level Newtonian
analysis should show It



Why we might expect backreaction - tidal torques
* Neighbouring structures exert torques on each other

* happens as structures reach 6 ~ 1

e anon-linear (2nd order) effect

e purely Newtonian

* explains spin of galaxies

e can this affect expansion?

e |t does in the local group

* do internal degrees of freedom couple to (i.e.
exchange energy with) universal expansion



Inhomogeneous Newtonian cosmology

Lay down particles on a uniform grid in a big uniformly
expanding sphere (v = Hr)

Perturb the particles off the grid r -> r + or

* plus related velocity perturbations to generate "growing
mode" of structure

g(r) can be decomposed into:

* homogenous field sourced by mean density p

* iInhomogeneous field sourced by 6p (little dipoles)
equations of motions r" = g can be re-scaled

* gives the equations that are solved in N-body codes



Newtonian gravity in re-scaled coordinates

N-particles of mass m: i =Gm ) | T
With r = a(t) x for arbitrary a(t)

CL . X] — Xy o CL '
Xz Z |XJ — XZ|3 aXz-
JF1
initlal conditions: x=r/a and %= ((H —a/a)r+ d1t)/a

Defining n(x) =) . d(x—x;) and dn =n—"n

X; + 295(7; ng d° on(x) e
a a

o é | 4rGmn .
/ - a  3a3 "

Exactly equivalent to the usual equations in r-coords

x — x;|3




Newtonian cosmology: x; +2%— " [ iz sn(x) X=X

a a3 x — x;|3

| a 4rGmn
with 1Cs - (g T T 3,3 >Xi°
x=r/a and x=((H —a/a)r—+dr)/a

* 3N equations for N particles

* there is No extra equation of motion for a(t)

 But we may choose a(t) to obey Friedmann equation

* an "auxiliary relation’
* (Gives conventional expansion + structure equations

* a(t) suffers no backreaction from structure emergence

* a(t) is just a "book-keeping" factor - no physical effect



Part 1: summary/conclusions

* A different perspective on the conventional equations for
structure growth (Dmietriev & Zel'dovich '63)

* fully non-linear & exact (but Newtonian) description

* a(t) is arbitrary, but extra terms appear in equations of
motion if a(t) does not obey Friedmann's equation

* physical quantities invariant under choice of a(t)

* No coupling of expansion to internal structure via tidal
forques

* can also be understood from scaling with radius/mass



Relation to Buchert & Ehlers '97 "kinematic BR'
Matter modelled as pressure-free Newtonian fluid

* unrealistic, but maybe a usetul "toy model’
Consider a specific volume V = as containing mass M
Raychaudhuri equation (expansion 6, vorticity w, shear o)
e a'/a+ (4m/3) GM/as = Q

e with Q = 2(<62> - <6>2)/3 + 2<w?2-02>

* 2nd order - no linear effect!
Naively a big effect (individual terms in Q ~ Gp)

e but...



Buchert & Ehlers '97

'‘Generalised Friedmann equation™: a'/a + GM/a3 = Q

e Q=2(<62> -<b6>2)/3 + 2<w?-02>

Q=0 is "conspiracy assumption"

But 'Q is a divergence” Q = V-1|dA.(u(V.u)-(u.V)u)
* S0 NO global effect for periodic BCs - "by construction”

No surprise that a"/a = -GM/a3 for an individual region

 fluctuations affect acceleration a’ and M

* put local, not "backreaction of 6p on global expansion’

If <Q>v-e = 0 would imply a conflict - this is not the case



Do B&E claim Newtonian backreaction®

 Q = 0requires ‘conspiracy” - but 'the average motion may be
approximately given by the Friedmann equation on a scale
which Is larger than the largest existing inhomogeneities”

e Later works: E.g. Buchert & Rasanen 2011 review

e "_linear theory ... effect vanishes by construction ... in
Newtonian ... true also in non-perturbative regime”

e "When we impose periodic BCs .... Q is strictly zero”

e but "If backreaction is substantial then current Newtonian
simulations (and analytic studies) are inapplicable”.

e S0 the absence of backreaction is a consequence of
assuming (falsely, one presumes) periodicity.

* How big is Q in reality?



How large is Q = (3 a''/a + 4nGM/an3)7
Q = Q1 + Q2o = V-1J/dA.(u(V.u)-(u.V)u) - (3/2V2)(JdA.u)2

* U is peculiar velocity wrt global H

It structure is a stat. homog. and isotropic random
porocess (i.e. random vector field)

* <Uu(V.u)-(u.Vi)u>ensemole = 0 (Monin and laglom, 1975)
e 50 Q1 is pure fluctuation

e |Q4| ~ <u2>/r2  independent of coherence length A
Second term is systematic: Qo ~ <u2> A2/ r4

Both are very small (<< H?2) for large V




|s there relativistic backreaction?

* Claims: "GR backreaction”is non-zero - and large
e But local universe should be accurately Newtonian
* errors ~ v2/c?2 ? ~1% accuracy within z = 0.1
e and that's where we measure Ho
* 50 very hard to believe there are >> 1% ettects

* Q: Are there even very small effects on expansion history
coming from non-relativistic effects?



s there relativistic backreaction®
Averaging of Einstein equations: G =T

FRW: metric g -> G and T = diag(p, P, P, P) are diagonal
e G=Tand V.T = 0 -> Friedmann equations

with inhomogeneity < G > =< T >7?

e ‘averaging problem”widely discussed in BR literature
what about internal pressure P of clusters?

* or internal pressure in stars, other compact objects
Do those give Friedmann equations with non-zero P?

* and hence deviation from Newtonian expansion law?



Averaging of Einstein equations: <G> =< T >7?

Consider e.qg. stars with internal pressure P

* does that give Friedmann equations with non-zero P?
No. Stars have Schwarzschild exterior with mass m

* space Iintegral of the stress pseudo-tensor

* Includes rest mass, motions, P, binding energy
* putis independent of time
Conservation of stars implies p ~ a3

* which demands P = 0 in the Friedmann eqguations



Relativistic BR from large-scale structure?
Einstein-Straus '45

* "What is the effect of
expansion of space’

-> Swiss-cheese
Fully non-linear

Interesting pertn to
e.g. proper mass

but background
expansion is exactly
unperturbed

small effects on D(z)



Backreaction from inter-galactic pressure
o Stars & DM gjected from galaxies by merging SMBHs

* intergalactic pressure P = n m 0,2
* and P in the background of GWs emitted

* Homogeneous (in conformal coords) pressure is a flux of
energy with non-zero divergence in real space

e Istlaw ... PdV work ....:p' =-(p+P/c2) V' / V

* but a very small effect

* relies on pressure being extended throughout space

* NO effect from internal pressure in bound systems that
are surrounded by empty space



Summary

* A different perspective on the DZ equations. There is no
dynamical equation for a(t). a(t) is arbitrary. But there is
no freedom to modify F-equation w/o changing structure
eqgs. Conventional system of equations is exact.

» Clarification of "generalised Friedmann equation”. Periodic
BCs is not the issue. |Q1| ~ <v2>/r2zand <Q1> = 0 (Monin
and laglom). <Q2> ~ <v2>A2/r4. Both are v. small and tend
to zero for large r.

* Discussion of relativistic backreaction. Averaging of
stress-energy for systems with internal pressure does not
iIntroduce non-zero P in Freidmann equations. Exact non-
inear solutions show no backreaction. Intergalactic P
does backreact, but P is weak and positive.



