Backreaction and FLRW consistency conditions

Francesco MONTANARI

FM, Syksy Räsänen [arXiv:1709.06022]

LAM Marseille – 2018, May 31

FLRW consistency condition

Clarkson, Basset, Hui-Ching Lu [arxiv:0712.3457]

$$d(z) = rac{1}{\sqrt{k}} \sin\left(\sqrt{k} \int_0^z rac{d ilde{z}}{h(ilde{z})}
ight) \quad \Rightarrow \quad \left| k = rac{1-h^2 d'^2}{d^2} \equiv k_H(z)
ight|$$

 $d(z) = H_0(1+z)D_A(z)$ $h(z) = H(z)/H_0$ Sachs optical equation

$$hrac{\mathsf{d}}{\mathsf{d}z}\left[(1+z)^2hd_A'
ight]=-rac{3}{2}\Omega_{\mathrm{m}0}(1+z)^3d_A$$

gives

$$h(z)^2 = rac{1}{(1+z)^4 (d_A')^2} \left[1 - 3\Omega_{m0} \int_0^z d ilde{z} (1+ ilde{z})^5 d_A(ilde{z}) d_A'(ilde{z})
ight]$$

Distance

Backreaction expansion rate

Backreaction prediction

Expansion rate from BC03 cosmic clocks + BAO

FLRW null test

F. Montanari (Helsinki)

$H_0 [km/Mpc/s]$	BC03	BC03+BAO	MaStro	MaStro+BAO
polynomial	$66.8^{+6.1}_{-6.3}$	$64.2^{+5.2}_{-3.9}$	70.7^{+12}_{-13}	$67.7^{+4.9}_{-4.8}$
spline	$68.8^{+7.3}_{-7.1}$	$62.5_{-4.6}^{+4.6}$	$69.0^{+\bar{1}ar{5}}_{-16}$	$68.7^{+5}_{-5.3}$
ΛCDM	$68.4_{-6.3}^{+6.2}$	$61.7^{+4.5}_{-4.5}$	$79.6_{-7.5}^{+6.7}$	$67.7_{-4.8}^{+5.3}$

k_H constraints

F. Montanari (Helsinki)

Forecast LSST+Euclid

- Backreaction prediction (best 95% C.I.): $-0.7 < k_H < 0.4$.
- Geometric, model independent test (best 95% C.I.):
 - JLA+BC03+BAO: $-2.32 < k_H < 0.4$.
 - JLA+MaStro+BAO: $-0.86 < k_H < 1.13$.
- Non-trivial degeneracies in parameter space.
- LSST+Euclid forecast, improvement on $k_H(z)$ by factor 6 (backreaction) and 3 (observational).
- Further consistency conditions: $k_p(z)$ (parallax), $k_S(z_I, z_s)$ (distances sum rule).