
3 axioms for Maxwell, 3 axioms for Einstein

Q sources pµ = (E/c , ~p)

jν = (cρ,~j) densities Tµν

Aµ = (V /c , ~A) fund. fields gµν

D2A = j field eq. D2g = T

(D2A)µ := ε0c
2∂ν(∂νAµ − ∂µAν) diff. oper.

(D2g)µν :=
c4

8πG
(Rµν −

1

2
R gµν − Λ gµν)

˙ := d/dτ, mẍµ − qFµν ẋ
ν = 0 test part. m��mẍλ + m��m Γλµν ẋ

µẋν = 0

Fµν := ∂µAν − ∂νAµ auxiliaries Γ··· = (g−1∂)·g··

∆ϕ =
q

~

∮
Aµẋ

µ A-B ; proper time ∆τ =

∮ √
gµν ẋµẋν



8 additive terms size of D2 ∼ 105 add. terms in g & g−1

Poincaré, gauge symmetries diffeomorphisms

∂µj
µ = 0 (non-)conservation DµT

µν = 0

linear, 2nd order uniqueness of D2 2nd order

ε0 = 8.854187817 · 10−12 N−1C2m−2

± 0 % coupl. const.

G = 6.674208 · 10−11 Nkg−2m2

± 5 · 10−5

Λ = 1.11 · 10−52 m−2

± 2 %



Soffel 
1989



21 octobre 1983: The official death of the meter

The 17th Conférence Générale des Poids et Mesures decides:

“Le mètre est la longueur du trajet parcouru dans le vide par la
lumière pendant une durée de 1/299 792 458 de seconde.”

distance Earth – Moon ∼ 3.8 ... · 108 m ± 1 cm,

Lunar Laser Ranging from Earth, starting 1962

distance Moon – Earth ∼ 3.8 ... · 108 m ± ? cm + 30 cm



Aµ = (V (r)/c ,~0) stat. spher. field

gµν =


B(r) 0 0 0

0 −A(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 , A,B > 0

V (r) = Q/(4πε0r) sol. of field eq.

B = 1/A = 1− S/r − Λr2/3, S :=
2GM

c2

Schwarzschild 1916 (Λ = 0), Kottler 1918

r = 0 Coulomb singularities r = 0
rSch ∼ S + ΛS3/3 Schwarzschild

rdS ∼
√

3/Λ− S/2, Λ > 0 de Sitter

d2r

dt2
=

Qq

m 4πε0r2
(i) accel. of mass. stat. test part.

d2r

dt2
= −GM

r2
[1− S/r ] + GMΛ/3

+c2Λr [1− S/r − Λr2/3]/3



(ii) Lensing

Consider a “photon” without spin, m = 0, with azimuthal velocity.

Its acceleration with respect to the affine parameter p is purely
radial:

d2r

dp2
=

c2

r
− 3

MG

r2

and independent of Λ.

Its acceleration with respect to coordinate time t is also purely
radial:

d2r

dt2
= B

(
1

r
− 3

MG

c2r2

)
,

but does idepend on Λ via B = 1− 2GM/(c2r)− Λr2/3.

I Does lensing depend on the cosmological constant?



The cosmological principle and kinematics

Let us put c = 1. Consider a space-time in coordinates t, r , θ, ϕ
with maximal symmetry on sub-spaces of simultaneity t = const.

gµν = diag
{

1, −a(t)2(1, s(r)2, s(r)2 sin2 θ)
}

with positive ‘scale factor’ a(t) > 0 and

s(r) :=


sinh r σ = −1
r σ = 0
sin r σ = +1 0 < r < π

Its spaces of simultaneity are pseudo-spheres (σ = −1), Euclidean
R3 (σ = 0) and spheres (σ = 1) with radius σa.

Our point-like test particles are (i) galaxies (or galaxy clusters)
with trajectories t = τ , ‘cosmic time’ and constant r , θ, ϕ
(‘comoving’) and (ii) spinless “photons” travelling on comoving
geodesics in 3-space.



Kinematical consequences:
I no lensing, because of maximal symmetry
I horizons, when da/dt is large
I redshift and apparent luminosities.

Redshift: Let a “photon” be emitted in a comoving galaxy at time
t = te , at (comoving) position r = 0, with an atomic period Te

and received today t = t0, here r = r0 with atomic period T0.
From the geodesic equation we have:

F (te , t0) :=

∫ t0

te

dt/a(t) = r0.

Pretending that the Milky Way is comoving we also have:

F (te + Te , t0 + T0) = r0.

Using Te � te , T0 � t0 to Taylor-expand F to linear order in both
arguments, we obtain the spectral deformation

z :=
λ0 − λe
λe

=
T0 − Te

Te
=

a(t0)

a(te)
− 1.

For an expanding universe, da/dt > 0 and z > 0, ‘redshift’.



Luminosities: Consider a comoving standard candle, e.g. a
supernova 1a, emitting many photons isotropically with a known
absolute luminosity L = 1035 W ± 10 %. Let us suppose that all
emitted photons reach the 2-sphere around the emission point and
containing the Milky Way.
The area of this 2-sphere is:∫ π

0
dθ

∫ 2π

0
dϕ
√

det gµν |t0,r0 = 4π a(t0)2s(r0)2,

with the restricted metric tensor

gµν |t0,r0 :=

(
−a(t0)2s(r0)2 0

0 −a(t0)2s(r0)2 sin2 θ

)
.

Therefore the apparent luminosity `, that is the energy received
by our detector per unit time and unit surface is:

` =
L

4π a(t0)2s(r0)2

(
a(te)

a(t0)

)2

.

Here one factor of a(te)/a(t0) takes into account that in a say
expanding univers, the photons emitted during a time interval Te

arrive in the longer time interval T0 = Te a(t0)/a(te).



The second factor of a(te)/a(t0) takes into account that each
photon arriving in our detector has, by de Broglie’s relation, a
lower energy E0 = ~ 2π/T0 than at emission.

The Hubble diagram: If we know the scale factor a(t) we can
compute the redshift and the apparent luminosity of every standard
candle as a function of the emission time te for a given fixed arrival
time t0. Unfortunately the arriving photons do not tell us their
time of flight. Our parry is eliminating te by a parametric plot
(z(te), `(te)), the famous Hubble diagram. If a(t) is monotonic,
say increasing, than we can invert the function z(te) and the
parametric plot defines a function `(z). Then the correspondence
a(t)→ `(z) is like a Fourier transform and we can ask whether it
is invertible. In other words, if we measure the Hubble diagram,
can we deduce the scale factor?



Dynamics and Friedman’s equations

If we want to apply the cosmological principle to Einstein’s
equations we must require the same symmetries for the
gravitational fields g and for the sources T :

Tµν = diag
{

(ρ(t), p(t) a(t)2(1, s(r)2, s(r)2 sin2 θ)
}

The flat case with constant scale factor teaches us that ρ(t) is an
energy density and p(t) a pressure. Now the Einstein equations
reduce to two equations,

3

(
a′

a

)2

+ 3
σ

a2
= 8π Gρ+ Λ, ′ :=

d

dt
,

2
a′′

a
+

(
a′

a

)2

+
σ

a2
= −8π Gp + Λ,

due to Friedman 1922.



Only two equations, but three unknowns: a, ρ, p.
Cheapest parry: put p = 0 and call this matter dust or Cold Dark
Matter, CDM.
The dust particles are the galaxies.
Then we have a unique local solution with two final conditions,
today: a0 := a(t0), H0 := a′(t0)/a0. Note that in a flat universe,
σ = 0, the initial condition a0 drops out for arbitrary pressure and
is chosen to be one meter or one light year.
The following dimensionless parameters are used:

Ωm :=
8π Gρ0

3H2
0

, ΩΛ :=
Λ

3H2
0

, Ωk := − σ

H2
0a

2
0

,

with the mass density today ρ0 := ρ(t0). From Friedman’s first
equation we have: Ωm + ΩΛ + Ωk = 1.



Best fit: ΛCDM
Super Novae + Baryonic Acoustic Oscillations + Planck (2015):

Ωk = 0.0008± 0.0020.

analytic solutions for flat universes filled with dust only:

a(t) = a0

(
8π Gρ0

Λ

)1/3

sinh2/3
[

1
2

√
3Λ t

]
,

ρ(t) = ρ0

(
a0

a(t)

)3

,

ΩΛ = 0.690± 0.006, H−1
0 = 14.42Gy ± 1%.

big bang: t = 0, age of universe:

t0 = arcosh
1 + ΩΛ

1− ΩΛ

1

3
√

ΩΛ
H−1

0 = 13.78Gy.



The Einstein-Straus solution 1945

•
• Q

E

M
• //

r

Friedman, Λ, ρ0

Kottler

ρ0 = M/( 4
3πr

3)


