Testing cosmological foundations

David L Wiltshire

Outline of talk

- Cosmology: Quest for 2 numbers H₀, q₀ now a quest for 2 functions: H(z), D(z)
- Can test foundations: e.g., Friedmann equation
- What is dark energy? Hypothesis: Dark energy is a misidentification of gradients in quasilocal gravitational energy in the geometry of a complex evolving structure of matter inhomogeneities
- Present and future tests of timescape cosmology:
 - Supernovae, BAO, CMB, ...
 - Clarkson-Bassett-Lu test, redshift-time drift, ...
- Tests below statistical homogeneity scale ...

Cosmic web: typical structures

- Galaxy clusters, 2 10 h⁻¹Mpc, form filaments and sheets or "walls" that thread and surround voids
- Universe is void dominated (60–80%) by volume, with distribution peaked at a particular scale (40% of total volume):

Survey	Void diameter	Density contrast
PSCz	$(29.8 \pm 3.5)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.92 \pm 0.03$
UZC	$(29.2 \pm 2.7)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.96 \pm 0.01$
2dF NGP	$(29.8 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$
2dF SGP	$(31.2 \pm 5.3)h^{-1}{ m Mpc}$	$\delta_{\rho} = -0.94 \pm 0.02$

Dominant void statistics in the Point Source Catalogue Survey (PSCz), the Updated Zwicky Catalogue (UZC), and the 2 degree Field Survey (2dF) North Galactic Pole (NGP) and South Galactic Pole (SGP), (Hoyle and Vogeley 2002,2004). More recent results of Pan et al. (2011) using SDSS Data Release 7 similar.

Statistical homogeneity scale (SHS)

- Modulo debate (SDSS Hogg et al 2005, Sylos Labini et al 2009; WiggleZ Scrimgeour et al, 2012), *some notion* of statistical homogeneity reached on 70–100 h⁻¹Mpc scales based on 2–point galaxy correlation function
- ▲ Also observe $\delta \rho / \rho \sim 0.07$ on scales $\gtrsim 100 h^{-1}$ Mpc (bounded) in largest survey volumes; no evidence yet for $\langle \delta \rho / \rho \rangle_{\mathcal{D}} \rightarrow \epsilon \ll 1$ as $vol(\mathcal{D}) \rightarrow \infty$
- BAO scale close to SHS; in galaxy clustering BAO scale determination is treated in near linear regime in Λ CDM
- No direct evidence for FLRW spatial geometry below SHS (although assumed, e.g., defining boost of Local Group wrt CMB rest frame)

General relativity: theory

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \qquad U^{\nu} \nabla_{\nu} U^{\mu} = 0$$

- Matter tells space how to curve; Space tells matter how to move
- Matter and geometry are dynamically coupled

$$\nabla^{\nu} T_{\mu\nu} = 0$$

- Energy is not absolutely conserved: rather energy-momentum tensor is covariantly conserved
- On account of the strong equivalence principle, $T_{\mu\nu}$ contains localizable energy–momentum only
- Gravitational energy is dynamical, nonlocal; integrated over a region it is *quasilocal*

Standard cosmology: practice

$$\frac{\dot{a}^2}{a^2} + \frac{kc^2}{a^2} - \frac{1}{3}\Lambda c^2 = \frac{8\pi G\rho}{3}$$

Friedmann tells space how to curve; (rigidly)

$$\mathbf{v}(\mathbf{r}) = \frac{H_0 \Omega_{M0}^{0.55}}{4\pi} \int d^3 \mathbf{r}' \,\delta_m(\mathbf{r}') \,\frac{(\mathbf{r}' - \mathbf{r})}{|\mathbf{r}' - \mathbf{r}|^3}$$

- Newton tells matter how to move; non-linearly in N-body simulations
- Dynamical energy of background fixed; Newtonian gravitational energy conserved
- Dynamical coupling of matter and geometry on small scales assumed irrelevant for cosmology

Relative volume deceleration...

• Two fluids, 4-velocities U^{μ} , \tilde{U}^{μ} , $U^{\mu}S_{\mu} = 0$, $\tilde{U}^{\mu}\tilde{S}_{\mu} = 0$, relative tilt $\gamma = (1 - \beta^2)^{-1/2}$, $\beta \equiv v/c$),

$$U^{\mu} = \gamma (\tilde{U}^{\mu} + \beta \tilde{S}^{\mu}), \qquad S^{\mu} = \gamma (\tilde{S}^{\mu} + \beta U^{\mu})$$

- Integrate on compact spherical boundary average tilt $\langle \gamma \rangle$ time derivative relative volume deceleration.
- Integrated relative clock rate drift.

What is a cosmological particle (dust)?

- In FLRW one takes observers "comoving with the dust"
- Traditionally galaxies were regarded as dust. However,
 - Galaxies, clusters not homogeneously distributed today
 - Dust particles should have (on average) invariant masses over the timescale of the problem
- Must coarse-grain over expanding fluid elements larger than the largest typical structures [voids of diameter $30 h^{-1}$ Mpc with $\delta_{\rho} \sim -0.95$ are $\gtrsim 40\%$ of z = 0 universe]

$$\begin{array}{c} g_{\mu\nu}^{\text{stellar}} \to g_{\mu\nu}^{\text{galaxy}} \to g_{\mu\nu}^{\text{cluster}} \to g_{\mu\nu}^{\text{wall}} \\ \vdots \\ g_{\mu\nu}^{\text{void}} \end{array} \right\} \to g_{\mu\nu}^{\text{universe}}$$

Averaging and backreaction

Fitting problem (Ellis 1984): On what scale are Einstein's field equations valid?

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- In general $\langle G^{\mu}{}_{\nu}(g_{\alpha\beta})\rangle \neq G^{\mu}{}_{\nu}(\langle g_{\alpha\beta}\rangle)$
- Weak backreaction: Assume global average is an exact solution of Einstein's equations on large scale
- Strong backreaction: Fully nonlinear; assume alternative solution for homogeneity at last scattering
 - Einstein's equations are causal; no need for them on scales larger than light has time to propagate
 - Inflation becomes more a quantum geometry phenomenon, impact in present spacetime structure

SHS average cell...

- Need to consider relative position of observers over scales of tens of Mpc over which $\delta \rho / \rho \sim -1$.
- Gradients in spatial curvature and gravitational energy can lead to calibration differences between rulers & clocks of bound structures and volume average

The Copernican principle

- Retain Copernican Principle we are at an average position for observers in a galaxy
- Observers in bound systems are not at a volume average position in freely expanding space
- By Copernican principle other average observers should see an isotropic CMB
- BUT nothing in theory, principle nor observation demands that such observers measure the same mean CMB temperature nor the same angular scales in the CMB anisotropies
- Average mass environment (galaxy) can differ significantly from volume—average environment (void)

Cosmological Equivalence Principle

In cosmological averages it is always possible to choose a suitably defined spacetime region, the cosmological inertial region, on whose boundary average motions (timelike and null) can be described by geodesics in a geometry which is Minkowski up to some time-dependent conformal transformation,

$$\mathrm{d}s_{\mathrm{CIR}}^2 = a^2(\eta) \left[-\mathrm{d}\eta^2 + \mathrm{d}r^2 + r^2 \mathrm{d}\Omega^2 \right],$$

- Defines Cosmological Inertial Region (CIR) in which regionally isotropic volume expansion is equivalent to a velocity in special relativity
- Such velocities integrated on a bounding 2-sphere define *"kinetic energy of expansion"*: globally it has gradients

Finite infinity

- Define *finite infinity*, "*fi*" as boundary to *connected* region within which *average expansion* vanishes $\langle \vartheta \rangle = 0$ and expansion is positive outside.
- Shape of *fi* boundary irrelevant (minimal surface generally): could typically contain a galaxy cluster.

Statistical geometry...

Timescape phenomenology

$$ds^{2} = -(1+2\Phi)c^{2}dt^{2} + a^{2}(1-2\Psi)g_{ij}dx^{i}dx^{j}$$

- Global statistical metric by Buchert average not a solution of Einstein equations; solve for ensemble of void and finite infinity (wall) regions
- Assuming uniform quasilocal Hubble flow condition, conformally match radial null geodesics of finite infinity and statistical geometries, fit to observations
- Relative regional volume deceleration integrates to a substantial difference in clock calibration over age of universe
- Difference in *bare* (statistical or volume–average) and *dressed* (regional or finite–infinity) parameters

Relative deceleration scale

gives an instantaneous 4-acceleration of magnitude $\alpha = H_0 c \bar{\gamma} \dot{\bar{\gamma}} / (\sqrt{\bar{\gamma}^2 - 1})$ beyond which *weak field cosmological general relativity* will be changed from Newtonian expectations: (i) as absolute scale nearby; (ii) divided by Hubble parameter to large z.

■ Relative volume deceleration of expanding regions of different local density/curvature, leads cumulatively to canonical clocks differing by $dt = \bar{\gamma}_w d\tau_w (\rightarrow \sim 35\%)$

Bare cosmological parameters

J.A.G. Duley, M.A. Nazer & DLW, CQG 30 (2013) 175006: full numerical solution with matter, radiation

Apparent cosmic acceleration

 Volume average observer sees no apparent cosmic acceleration

$$\bar{q} = \frac{2\left(1 - f_{\rm v}\right)^2}{(2 + f_{\rm v})^2}.$$

As $t \to \infty$, $f_v \to 1$ and $\bar{q} \to 0^+$.

A wall observer registers apparent cosmic acceleration

$$q = \frac{-\left(1 - f_{\rm v}\right)\left(8f_{\rm v}^{3} + 39f_{\rm v}^{2} - 12f_{\rm v} - 8\right)}{\left(4 + f_{\rm v} + 4f_{\rm v}^{2}\right)^{2}},$$

Effective deceleration parameter starts at $q \sim \frac{1}{2}$, for small f_v ; changes sign when $f_v = 0.5867...$, and approaches $q \rightarrow 0^-$ at late times.

Cosmic coincidence not a problem

$H(z)/H_0$

 $H(z)/H_0$ for $f_{\rm V0}=0.762$ (solid line) is compared to three spatially flat $\Lambda \rm CDM$ models: (i) $(\Omega_{\rm M0},\Omega_{\Lambda0})=(0.249,0.751);$ (ii) $(\Omega_{\rm M0},\Omega_{\Lambda0})=(0.279,0.721)$ (iii) $(\Omega_{\rm M0},\Omega_{\Lambda0})=(0.34,0.66);$

- Function $H(z)/H_0$ displays quite different characteristics
- ✓ For 0 < z ≤ 1.7, $H(z)/H_0$ is larger for TS model, but value of H_0 assumed also affects H(z) numerical value

Dressed "comoving distance" D(z)

Equivalent "equation of state"?

A formal "dark energy equation of state" $w_L(z)$ for the TS model, with $f_{\rm V0} = 0.695$, calculated directly from $r_w(z)$: (i) $\Omega_{\rm M0} = 0.41$; (ii) $\Omega_{\rm M0} = 0.3175$.

Description by a "dark energy equation of state" makes no sense when there's no physics behind it; but average value $w_L \simeq -1$ for z < 0.7 makes empirical sense.

Observational data fitting: CMB

Planck data Λ **CDM parametric fit**

Duley, Nazer + DLW, CQG 30 (2013) 175006:

- Use angular scale, baryon drag scale from Λ CDM fit
- Baryon-photon ratio $\eta_{B\gamma} = 4.6-5.6 \times 10^{-10}$ within 2σ of all observed light element abundances (including ⁷Li).

Planck constraints $D_A + r_{drag}$

- Dressed Hubble constant $H_0 = 61.7 \pm 3.0 \, \text{km/s/Mpc}$
- **•** Bare Hubble constant $H_{w0} = \overline{H}_0 = 50.1 \pm 1.7$ km/s/Mpc
- Local max Hubble constant $H_{v0} = 75.2^{+2.0}_{-2.6}$ km/s/Mpc
- Present void fraction $f_{v0} = 0.695^{+0.041}_{-0.051}$
- Solution Bare matter density parameter $\bar{\Omega}_{M0} = 0.167^{+0.036}_{-0.037}$
- \checkmark Dressed matter density parameter $\Omega_{\rm M0}=0.41^{+0.06}_{-0.05}$
- Dressed baryon density parameter $\Omega_{\rm B0} = 0.074^{+0.013}_{-0.011}$
- Nonbaryonic/baryonic matter ratio $\Omega_{\rm C0}/\Omega_{\rm B0} = 4.6^{+2.5}_{-2.1}$
- . Age of universe (galaxy/wall) $\tau_{\rm w0} = 14.2 \pm 0.5 \, {\rm Gyr}$
- Age of universe (volume-average) $t_0 = 17.5 \pm 0.6 \,\mathrm{Gyr}$
- Apparent acceleration onset $z_{\rm acc} = 0.46^{+0.26}_{-0.25}$

Non-parametric CMB constraints

- What do we know without a cosmological model?

CMB sound horizon + BAO LRG / Lyman α

- Non-parametric CMB angular scale constraint (blue, 2σ)
- Baryon acoustic oscillations from BOSS (using FLRW model!) galaxy clustering statistics z = 0.38, 0.51, 0.61 (red, 2σ); Lyman α forest z = 2.34 (pink, 2σ)

Supernovae Ia: data fits

Dam, Heinesen + DLW, MNRAS 472 (2017) 835: SALT2 on JLA data (Betouille et al 2014), 740 Snela, with methodology Nielsen, Guffanti & Sarkar Sci. Rep. 6 (2016) 35596

Dam, Heinesen & DLW, arXiv:1706.07236

- Timescape / Λ CDM statistically indistinguishable, $\ln B = 0.60, 0.08 \ z_{min} = 0.024, 0.033$
- Best fit $f_{v0} = 0.778^{+0.063}_{-0.056}$ (or $\Omega_{M0} = 0.33^{+0.06}_{-0.08}$) same as Leith, Ng & DLW, ApJ 672 (2008) L91 fit to Riess07 data

JLA data: SALT2 light curve parameters

- Inclusion of Snela below statistical homogeneity scale significant issue; along with Snel systematics (dust reddening/extinction, intrinsic colour variations)
- SHS is seen as a systematic irrespective of model cosmology

Goal: nonparametric BAO constraints

- Fit using angular correlation functions only *empirically* in $\Delta z = 0.02$ slices (Carvalho et al 2016, 2017)
- Relative evidence for timescape slightly increased but $\ln B < 1$ still AND systematic uncertainties underestimated

Preliminary: with C Blake, A Heinesen

- Using BOSS-CMASS entire sample, radial + angular fit, approximations still in use (peak location slightly higher)
- Removing LCDM assumptions a coding challenge
- Angular/radial separation, parameter fits in progress

Clarkson Bassett Lu test $\Omega_k(z)$

For Friedmann equation a statistic constant for all z

Left panel: CBL statistic from Sapone, Majerotto and Nesseris, PRD 90, 023012 (2014) Fig 8,

using existing data from SneIa (Union2) and passively evolving galaxies for H(z).

Right panel: TS prediction, with $f_{v0} = 0.695^{+0.041}_{-0.051}$.

Projections for Euclid, SKA

Clarkson Bassett Lu test with Euclid

- Projected uncertainties for ACDM, with *Euclid* + 1000 Snela, Sapone *et al*, PRD 90, 023012 (2014) Fig 10
- Timescape prediction (green), compared to non-Copernican Gpc void model (blue), and *tardis* cosmology, Lavinto *et al* JCAP 12 (2013) 051 (brown).
- Timescape prediction becomes greater than uncertainties for $z \leq 1.5$. (Falsfiable.)

Clarkson, Bassett and Lu homogeneity test

• Better to constrain $\Omega_k(z)$ numerator: $\mathcal{B} \equiv [H(z)D'(z)]^2 - 1$ for TS model with $f_{v0} = 0.762$ (solid line) and two Λ CDM models (dashed lines): (i) $\Omega_{M0} = 0.28, \ \Omega_{\Lambda0} = 0.71, \ \Omega_{k0} = 0.01$; (ii) $\Omega_{M0} = 0.28, \ \Omega_{\Lambda0} = 0.73, \ \Omega_{k0} = -0.01$.

Redshift time drift (Sandage–Loeb test)

 $H_0^{-1} \frac{\mathrm{d}z}{\mathrm{d}\tau}$ for the TS model with $f_{\mathrm{V}0} = 0.76$ (solid line) is compared to three spatially flat Λ CDM models.

Measurement is extremely challenging. May be feasible over a 10–20 year period by precision measurements of the Lyman- α forest over redshift 2 < z < 5 with next generation of Extremely Large Telescopes

Back to the early Universe

- Need CMB constraints of same precision as Λ CDM
- BUT backreaction in primordial plasma neglected
- Backreaction of similar order to density perturbations (10⁻⁵); little influence on background but may influence growth of perturbations
- First step: add pressure to new "relativistic Lagrangian formalism": Buchert et al, PRD 86 (2012) 023520; PRD 87 (2013) 123503; Alles et al, PRD 92 (2015) 023512
- Rewrite whole of cosmological perturbation theory without a single global background Einstein 4-geometry
- Formalism adapted to fluid frames ("Lagrangian") not hypersurfaces ("Eulerian").

Inhomogeneity below SHS

- Toy model A-Szekeres solutions: Planck ACDM on $\gtrsim 100 h^{-1}$ Mpc, Szekeres inhomogeneity inside, K Bolejko, MA Nazer, DLW JCAP 06 (2016) 035
- Potential insights about
 - convergence of "bulk flows" (see also Kraljic & Sarkar, JCAP 10 (2016) 016)
 - H_0 tension
 - Models for large angle CMB "anomalies" in future
- Standard sirens (GW170817 etc): will test this!

Apparent Hubble flow variation

(b) 2: $12.5 - 25 h^{-1}$ Mpc N = 505.

(c) 3: $25 - 37.5 h^{-1}$ Mpc N = 514.

(f) 6: $62.5 - 75 h^{-1}$ Mpc N = 562.

(g) 7: 75 - 87.5 h^{-1} Mpc N = 414.

(i) 9: $100 - 112.5 h^{-1}$ Mpc N = 222. (j) 10: $112.5 - 156.25 h^{-1}$ Mpc N = 280.

(k) 11: $156.25 - 417.4 \ h^{-1} \ \text{Mpc} \ N = 91.$

CosmoBack, 29 May 2018 - p. 41/54

(e) 5: $50 - 62.5 h^{-1}$ Mpc N = 819.

Radial variation $\delta H_s = (H_s - H_0)/H_0$

- Two choices of shell boundaries (closed and open circles); for each choice data points uncorrelated
- Result: Hubble expansion is very significantly more uniform in LG frame than in CMB frame: $\ln B > 5$; (except for $40 \leq r \leq 60 h^{-1}$ Mpc).

Boost offset and deviation

Kraljic and Sarkar (JCAP 2016). FLRW + Newtonian N-body simulation with bulk flow $v_{bulk}(r)$

$$H_s' - H_s \sim \frac{|\mathbf{v}|^2 - 2\mathbf{v} \cdot \mathbf{v}_{\text{bulk}}(r)}{3H_0 \langle r^2 \rangle}$$

Cosmic Microwave Background dipole

Special Relativity: motion in a thermal bath of photons

$$T' = \frac{T_0}{\gamma(1 - (v/c)\cos\theta')}$$

• 3.37 mK dipole: $v_{\text{Sun-CMB}} = 371 \text{ km s}^{-1}$ to $(264.14^{\circ}, 48.26^{\circ})$; splits as $v_{\text{Sun-LG}} = 318.6 \text{ km s}^{-1}$ to $(106^{\circ}, -6^{\circ})$ and $v_{\text{LG-CMB}} = 635 \pm 38 \text{ km s}^{-1}$ to $(276.4^{\circ}, 29.3^{\circ}) \pm 3.2^{\circ}$

LTB and Szekeres profiles

• Fix $\Delta r = 0.1 r_0$, $\varphi_{obs} = 0.5 \pi$

- LTB parameters: $\alpha = 0$, $\delta_0 = -0.95$, $r_0 = 45.5 \ h^{-1}$ Mpc; $r_{obs} = 28 \ h^{-1}$ Mpc, $\vartheta_{obs} = any$
- Szekeres parameters: $\alpha = 0.86$, $\delta_0 = -0.86$; $r_{obs} = 38.5 \ h^{-1} \text{ Mpc}$; $r_{obs} = 25h^{-1} \text{ Mpc}$, $\vartheta_{obs} = 0.705\pi$.

Szekeres model ray tracing constraints

- Require Planck satellite normalized FLRW model on scales $r \gtrsim 100 h^{-1}$ Mpc; i.e., spatially flat, $\Omega_m = 0.315$ and $H_0 = 67.3$ km/s/Mpc
- CMB temperature has a maximum $T_0 + \Delta T$, where

 $\Delta T(\ell = 276.4^{\circ}, b = 29.3^{\circ}) = 5.77 \pm 0.36 \text{ mK},$

matching dipole amplitude, direction in LG frame

CMB quadrupole anisotropy lower than observed

$$C_{2,CMB} < 242.2^{+563.6}_{-140.1} \ \mu \text{K}^2.$$

- Hubble expansion dipole (LG frame) matches COMPOSITE one at $z \rightarrow 0$, if possible up to $z \sim 0.045$
- Match COMPOSITE quadrupole similarly, if possible

CMB dipole, quadrupole examples

- Generate $z_{ls}(\hat{\mathbf{n}})$ for each gridpoint
- $T = T_{\rm ls}/(1+z_{\rm ls})$; $(T_{\rm max} T_{\rm min})/2$ left (mK); C_2 right (μ K²)

Peculiar potential not Rees-Sciama

- Rees–Sciama (and ISW) consider photon starting and finishing from *average* point
- Across structure $|\Delta T|/T \sim 2 \times 10^{-7}$
- Inside structure $|\Delta T|/T \sim 2 \times 10^{-3}$

Large angle CMB anomalies?

Anomalies (significance increased after Planck 2013):

- power asymmetry of northern/southern hemispheres
- alignment of the quadrupole and octupole etc;
- Iow quadrupole power;
- parity asymmetry; ...

Critical re-examination required; e.g.

- Iight propagation through Hubble variance dipole foregrounds may differ subtly from Lorentz boost dipole
- dipole subtraction is an integral part of the map-making; is galaxy correctly cleaned?
- Freeman et al (2006): 1–2% change in dipole subtraction may resolve the power asymmetry anomaly.

Planck results arXiv:1303.5087

Boost dipole from second order effects

Original

Aberration (Exaggerated)

Modulation (*Exaggerated*)

Eppur si muove?

Planck Doppler boosting 1303.5087

- Dipole direction consistent with CMB dipole $(\ell, b) = (264^{\circ}, 48^{\circ})$ for small angles, $l_{\min} = 500 < l < l_{\max} = 2000$
- When $l < l_{max} = 100$, shifts to WMAP power asymmetry modulation dipole $(\ell, b) = (224^{\circ}, -22^{\circ}) \pm 24^{\circ}$

Systematics for CMB

Define nonkinematic foreground CMB anisotropies by

$$\begin{split} \Delta T_{\rm nk-hel} &= \frac{T_{\rm model}}{\gamma_{\rm LG}(1-\boldsymbol{\beta}_{\rm LG}\cdot\hat{\mathbf{n}}_{\rm hel})} - \frac{T_{0}}{\gamma_{\rm CMB}(1-\boldsymbol{\beta}_{\rm CMB}\cdot\hat{\mathbf{n}}_{\rm hel})} \\ & T_{\rm model} = \frac{T_{\rm dec}}{1+z_{\rm model}(\hat{\mathbf{n}}_{\rm LG})}, \quad T_{0} = \frac{T_{\rm dec}}{1+z_{\rm dec}} \end{split}$$

 $z_{\rm model}(\hat{\bf n}_{\rm LG}) =$ anisotropic Szekeres LG frame redshift; $T_0 =$ present mean CMB temperature

• Constrain $\frac{T_{\text{model}}}{\gamma_{\text{LG}}(1-\beta_{\text{LG}}\cdot\hat{\mathbf{n}}_{\text{hel}})} - T_{\text{obs}}$ by Planck with sky mask

Non-kinematic dipole in radio surveys

- Effects of aberration and frequency shift also testable in large radio galaxy surveys (number counts)
- Rubart and Schwarz, arXiv:1301.5559, have conducted a careful analysis to resolve earlier conflicting claims of Blake and Wall (2002) and Singal (2011)
- Rubart & Schwarz result: kinematic origin of radio galaxy dipole ruled out at 99.5% confidence
- Our smoothed Hubble variance dipole in LG frame $(180 + \ell_d, -b_d) = (263^\circ \pm 6^\circ, 39^\circ \pm 3^\circ)$ for $r > r_o$ with $20 h^{-1} \leq r_o \leq 45 h^{-1}$ Mpc, or $(\text{RA}, \text{dec}) = (162^\circ \pm 4^\circ, -14^\circ \pm 3^\circ)$, lies within error circle of NVSS survey dipole found by Rubart & Schwarz, $(\text{RA}, \text{dec}) = (154^\circ \pm 21^\circ, -2^\circ \pm 21^\circ)$

Conclusion: Why is Λ **CDM so successful?**

- Early Universe was extremely close to homogeneous and isotropic, leading to a simplifying principle – Cosmological Equivalence Principle
- Finite infinity geometry (2 15 h⁻¹Mpc) is close to spatially flat (Einstein–de Sitter at late times) – N–body simulations successful *for bound structure*
- Hubble parameter (first derivative of statistical metric;
 i.e., connection) is to some extent observer dependent
- Even on small scales there is a notion of uniform Hubble flow at expense of calibration of rulers AND CLOCKS
- Test of the Friedmann equation possible with Euclid, 1000 Snela, SKA2, ...
- For theorists, Clarkson–Bassett–Lu test is tipping point

References

DLW: New J. Phys. 9 (2007) 377 Phys. Rev. Lett. 99 (2007) 251101 Phys. Rev. D78 (2008) 084032 Phys. Rev. D80 (2009) 123512 Class. Quan. Grav. 28 (2011) 164006 B.M. Leith, S.C.C. Ng & DLW: ApJ 672 (2008) L91 P.R. Smale & DLW, MNRAS 413 (2011) 367 P.R. Smale, MNRAS 418 (2011) 2779

Local void

J.A.G. Duley, M.A. Nazer & DLW: Class. Quan. Grav. 30 (2013) 175006

M.A. Nazer & DLW: Phys. Rev. D91 (2015) 063519 Lecture Notes: arXiv:1311.3787

L.H. Dam, A. Heinesen & DLW: MNRAS 472 (2017) 835